Publications by authors named "Zhong-Yan Chen"

A Gram-stain-negative, non-motile, and slightly halophilic alphaproteobacterium, designated strain EGI FJ00035, was isolated from enrichment sediment samples of a saline lake in Xinjiang Uygur Autonomous Region, PR China. The taxonomic position of the isolate was determined using the polyphasic taxonomic and phylogenomic analyses. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain EGI FJ00035 formed a distinct clade with '' UJN715 and '' lm93 with sequence similarities of 98.

View Article and Find Full Text PDF

Enhanced reactive oxygen species (ROS) at the beginning of reperfusion activated signal transducer and activator of transcription 3 (STAT3) in intermittent hypobaric hypoxia (IHH)-afforded cardioprotection against ischemia/reperfusion (I/R). However, its mechanism remains largely unknown. This study aimed to investigate the role and the downstream of STAT3 in exogenous enhanced post-ischemic ROS-induced cardioprotection using the model of moderate hydrogen peroxide postconditioning (HOPoC) mimicking endogenous ROS in IHH.

View Article and Find Full Text PDF

Understanding the dynamics of the immune response following late myocardial reperfusion is critical for the development of immunomodulatory therapy for myocardial infarction (MI). Cyclosporine A (CSA) possesses multiple therapeutic applications for MI, but its effects on the inflammation caused by acute MI are not clear. This study aimed to determine the dynamics of the immune response following myocardial ischemia/reperfusion (I/R) and the effects of CSA in a mouse model of prolonged myocardial ischemia designated to represent the human condition of late reperfusion.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play important roles in cell fate decisions. However, the miRNAs and their targets involved in the regulation of cardiac lineage specification are largely unexplored. Here, we report novel functions of miR-142-3p in the regulation of cardiomyocyte differentiation from mouse embryonic stem cells (mESCs).

View Article and Find Full Text PDF

Embryonic stem cells (ESCs), derived from the inner cell mass of blastocysts, are self-renewing and pluripotent cells with the ability to differentiate into all derivatives of three primary germ layers, including cardiomyocytes. Recent studies have revealed that posttranscriptional regulations of lineage specific genes by microRNAs (miRNAs) emerge as a new class of cell fate and lineage determinants of ESCs. However, the miRNAs that control ESC differentiation are still largely unexplored.

View Article and Find Full Text PDF

Aim: Histone lysine demethylases (KDMs) control the lineage commitments of stem cells. However, the KDMs involved in the determination of the cardiomyogenic lineage are not fully defined. The aim of this study was to investigate the expression profiles of KDMs during the cardiac differentiation of mouse embryonic stem cells (mESCs).

View Article and Find Full Text PDF

The migration of vascular smooth muscle cells (VSMCs) from media to intima is a critical step in the formation of atheroma and vascular stenosis as well as in the restenosis after vascular intervention. As an important downstream effector of RhoA, Rho-associated kinase (ROCK) plays an important role in VSMC migration and vascular remodeling by regulating actin filament cytoskeleton and focal adhesion. There are many bioactive substances such as aldosterone, sphingosine 1 phosphate (S1P), platelet-derived growth factor (PDGF) and angiotensin II (Ang II) that could induce VSMC migration through Rho/ROCK pathway by binding to their specific receptors.

View Article and Find Full Text PDF

This study aims to investigate the inhibitory effect on proliferation and metastasis of 20-O-(beta-D-glucopyranosyl)-20(S)-protopanaxadiol (IH901) on ECV304 cell line. MTT assay was used to examine the effect of cell proliferation inhibition and the adhesive ability of ECV304 cells to artificial basement membrane. Morphology of cell apoptosis was observed with phase contrast microscope.

View Article and Find Full Text PDF

20-O-(beta-D-glucopyranosyl)-20(S)-protopanaxadiol (IH-901), a novel intestinal bacterial metabolite of ginseng protopanaxadiol saponins, is reported to induce apoptosis in a variety of cancer cells. We purified the compound and measured its in vitro anti-tumor activity. IH-901 inhibited cell growth of human hepatocellular carcinoma SMMC7721 cells in a dose- and time-dependent manner.

View Article and Find Full Text PDF