Angew Chem Int Ed Engl
December 2024
Molecular frameworks have recently shown a great potential in atmospheric water harvesting, in which the water release at low temperatures is challenging. Anion-organic frameworks based on anion-coordination chemistry are presented herein to meet this challenge. These frameworks are prepared as tubular single crystals in pure water from the in-situ protonation and crystallization of pyridine-terminated triphenylamine derivatives with hydrochloric or hydrobromic acid.
View Article and Find Full Text PDFChem Commun (Camb)
November 2024
Organic optical heterostructures have emerged as promising candidates for applications in organic photonics. In this study, we demonstrate a facile strategy to integrate different emission and polarization properties into the sub-blocks of luminescent organic heterostructures, by a mask-assisted vapor treatment method on the microcrystals of a pyridine-functionalized tetraphenylethylene chromophore.
View Article and Find Full Text PDFThe chiral recognition and separation of enantiomers are of great importance for biological research and the pharmaceutical industry. Preparing homochiral materials with adjustable size and chiral binding sites is beneficial for achieving an efficient chiral recognition performance. Here, a homochiral covalent organic framework membrane modified with β-cyclodextrin (CD-COF) was constructed, which was subsequently utilized as an electrochemical sensor for the enantioselective sensing of tryptophan (Trp) molecules.
View Article and Find Full Text PDFTwo dual fluorescent/phosphorescent tris-heteroleptic mononuclear Ru(ΙΙ) complexes ( and ) were designed and applied in amyloid-β (Aβ) sensing. These complexes have a general formula of [Ru(phen)(dppz)()](PF), where is (2-pyrazinyl)(2-pyridyl)(methyl)amine (H-) with different substituents (-OMe for , -H for ), phen is 1,10-phenanthroline, and dppz is dipyridophenazine, respectively. Compared with the previously reported ratiometric probe with a di(pyrid-2-yl)(methyl)amine ligand, complex can be employed for not only ratiometric emissive detection of Aβ aggregation but also ratiometric imaging detection of Aβ fibrils.
View Article and Find Full Text PDFPhotonic heterostructures with codable properties have shown great values as versatile information carriers at the micro- and nanoscale. These heterostructures are typically prepared by a step-by-step growth or post-functionalization method to achieve varied emission colors with different building blocks. In order to realize high-throughput and multivariate information loading, we report here a strategy to integrate polarization signals into photonic heterojunctions.
View Article and Find Full Text PDFFunctionalization of Si-bound methyl group provides an efficient access to diverse organosilanes. However, the asymmetric construction of silicon-stereogenic architectures by functionalization of Si-bound methyl group has not yet been described despite recent significant progress in producing chiral silicon. Herein, we disclosed the enantioselective silylmethyl functionalization involving the aryl to alkyl 1,5-palladium migration to access diverse naphthalenes possessing an enantioenriched stereogenic silicon center, which are inaccessible before.
View Article and Find Full Text PDFEndowing the widely-used synthetic polymer nylon with high-performance organic room-temperature phosphorescence would produce advanced materials with a great potential for applications in daily life and industry. One key to achieving this goal is to find a suitable organic luminophore that can access the triplet excited state with the aid of the nylon matrix by controlling the matrix-luminophore interaction. Herein we report highly-efficient room-temperature phosphorescence nylons by doping cyano-substituted benzimidazole derivatives into the nylon 6 matrix.
View Article and Find Full Text PDFBackground: Angiostrongyliasis is a highly dangerous infectious disease. Angiostrongylus cantonensis larvae migrate to the mouse brain and cause symptoms, such as brain swelling and bleeding. Noncoding RNAs (ncRNAs) are novel targets for the control of parasitic infections.
View Article and Find Full Text PDFCircularly polarized luminescence (CPL)-active molecular materials have drawn increasing attention due to their promising applications for next-generation display and optoelectronic technologies. Currently, it is challenging to obtain CPL materials with both large luminescence dissymmetry factor (g) and high quantum yield (Φ). A pair of enantiomeric N N C-type Pt(II) complexes (L/D)-1 modified with chiral Leucine methyl ester are presented herein.
View Article and Find Full Text PDFRecently, chiral metal-organic coordination materials have emerged as promising candidates for a wide range of applications in chiroptoelectronics, chiral catalysis, and information encryption, etc. Notably, the chiroptical effect of coordination chromophores makes them appealing for applications such as photodetectors, OLEDs, 3D displays, and bioimaging. The direct synthesis of chiral coordination materials using chiral organic ligands or complexes with metal-centered chirality is very often tedious and costly.
View Article and Find Full Text PDFMembrane consisting of ordered sub-nanochannels has been pursued in ion separation technology to achieve applications including desalination, environment management, and energy conversion. However, high-precision ion separation has not yet been achieved owing to the lack of deep understanding of ion transport mechanism in confined environments. Biological ion channels can conduct ions with ultrahigh permeability and selectivity, which is inseparable from the important role of channel size and "ion-channel" interaction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
The unique ion-transport properties in nanoconfined pores enable nanofluidic devices with great potential in harvesting osmotic energy. The energy conversion performance could be significantly improved by the precise regulation of the "permeability-selectivity" trade-off and the ion concentration polarization effect. Here, we take the advantage of electrodeposition technique to fabricate a Janus metal-organic framework (J-MOF) membrane that possesses rapid ion-transport capability and impeccable ion selectivity.
View Article and Find Full Text PDFThe recognition and separation of chiral molecules with similar structure are of great industrial and biological importance. Development of highly efficient chiral recognition systems is crucial for the precise application of these chiral molecules. Herein, a homochiral zeolitic imidazolate frameworks (c-ZIF) functionalized nanochannel device that exhibits an ideal platform for electrochemical enantioselective recognition is reported.
View Article and Find Full Text PDFThe development of circularly polarized electroluminescence (CPEL) is currently hampered by the high difficulty and cost in the syntheses of suitable chiral materials and the notorious chirality diminishment issue in electrical devices. Herein, diastereomeric Ir and Ru complexes with chiral (±)-camphorsulfonate counteranions are readily synthesized and used as the active materials in circularly polarized light-emitting electrochemical cells to generate promising CPELs. The addition of the chiral ionic liquid (±)-1-butyl-3-methylimidazole camphorsulfonate into the active layer significantly improves the device performance and the electroluminescence dissymmetry factors (≈10 ), in stark contrast to the very weak circularly polarized photoluminescence of the spin-coated films of these diastereomeric complexes.
View Article and Find Full Text PDFHerein, a nanopipette-based thermocouple probe that possesses high temperature resolution, rapid response, good reversibility and stability was constructed and successfully applied for single-cell temperature sensing. Different intracellular temperatures were observed in diverse types of cells, which reveals differences in their metabolism levels. Temperature responses of cancer and normal cells against various exogenous drugs were also demonstrated.
View Article and Find Full Text PDFThis review centers on a closed bipolar electrode (BPE) array using an electro-fluorochromism (EFC) or electro-chemiluminescence (ECL) reaction as the reporting reaction. Electrochemical signals at one pole of the closed BPE array can be transduced into the EFC or ECL signals at the opposite pole. Therefore, the current signal of a redox reaction can be easily detected and imaged by monitoring the luminescence signal.
View Article and Find Full Text PDFCrystalline materials with appealing luminescent properties are attractive materials for various optoelectronic applications. The in situ bicomponent reaction of 1,2-ethylenedisulfonic acid with 1,4-di(pyrid-2-yl)benzene, 1,4-di(pyrid-3-yl)benzene, or 1,4-di(pyrid-4-yl)benzene affords luminescent crystals with hydrogen-bonded polymeric structures. Variations in the positions of the pyridine nitrogen atoms lead to alternating polymeric structures with either a ladder- or zigzag-type of molecular arrangement.
View Article and Find Full Text PDFA crack-free micrometer-sized compact structure of 1,3,5-tris(4-aminophenyl)benzene-terephthaldehyde-covalent organic frameworks (TAPB-PDA-COFs) was constructed in situ at the tip of a theta micropipette (TMP). The COF-covered theta micropipette (CTP) then created a stable liquid-gas interface inside COF nanochannels, which was utilized to electrochemically analyze the content and distribution of ammonia gas in the microenvironments. The TMP-based electrochemical ammonia sensor (TEAS) shows a high sensing response, with current increasing linearly from 0 to 50,000 ppm ammonia, owing to the absorption of ammonia gas in the solvent meniscus that connects both barrels of the TEAS.
View Article and Find Full Text PDFIon transport in nanochannels of a size comparable to that of hydrated ions exhibits unique properties due to the synergistic effect of various forces. Here, we design a nanochannel/ion channel composite (NIC) membrane that shows a high ion current rectification (ICR) ratio in different electrolytes. Experimental and theoretical results demonstrate that the synergistic effect of electrostatic interaction and ionic dehydration plays an important role in regulating the ICR behavior of the NIC membrane.
View Article and Find Full Text PDFNano- and micromaterials with anisotropic photoluminescence and photon transport have widespread application prospects in quantum optics, optoelectronics, and displays. But the nature of the polarization information of the out-coupled light, with respect to that of the source luminescence, has never been explored in active optical-waveguiding organic crystals. Herein, three different modes (selective, anisotropic, and consistent) of polarized-photon out-coupling are proposed and successfully implemented in a set of 2D organic microcrystals with highly linearly-polarized luminescence.
View Article and Find Full Text PDFVarious S-bonding configurations existing in sulfur-doped reduced graphene oxide (S-rGO) show different electronic structures and physiochemical properties. Thus, understanding the properties of unique S-bonding configurations requires the construction of S-rGO with only single configuration. Here, we synthesized S-rGO with a pure thiophene-sulfur configuration through a simple and low-cost hydrothermal method by simply controlling the oxidation degree of the graphene oxide (GO) precursor.
View Article and Find Full Text PDFHigh ion selectivity and permeability, as two contradictory aspects for the membrane design, highly hamper the development of osmotic energy harvesting technologies. Metal-organic frameworks (MOFs) with ultra-small and high-density pores and functional surface groups show great promise in tackling these problems. Here, we propose a facile and mild cathodic deposition method to directly prepare crack-free porphyrin MOF membranes on a porous anodic aluminum oxide for osmotic energy harvesting.
View Article and Find Full Text PDFConventional square-planar platinum complexes typically form one-dimensional assemblies as a result of unidirectional metallophilic and/or π⋅⋅⋅π intermolecular interactions. Organoplatinum(II) complexes with a cruciform shape are presented herein to construct two-dimensional (2D) microcrystals with full-color and white phosphorescence. These 2D crystals show unique monocomponent π⋅⋅⋅π stacking, from either the cyclometalating or noncyclometalating ligand, and the bicomponent alternate π⋅⋅⋅π stacking from both ligands along different facet directions.
View Article and Find Full Text PDFThe key to successful in vitro embryo production (IVEP) is to mimic the natural in vivo oviductal microenvironment. Although the chemically defined media in extensive use for the in vitro culture of mammalian embryos is based on the composition of oviductal fluid, the IVEP systems in current use must still bypass the oviduct to produce embryos in vitro. Extracellular vesicles (EVs) in the oviduct are versatile intercellular delivery vehicles for maternal-embryo communication, and a lack of them can be associated with failed early embryonic development under in vitro culture conditions.
View Article and Find Full Text PDF