Publications by authors named "Zhong-Ming Niu"

Resonance plays critical roles in the formation of many physical phenomena, and several methods have been developed for the exploration of resonance. In this work, we propose a new scheme for resonance by solving the Dirac equation in the complex momentum representation, in which the resonant states are exposed clearly in the complex momentum plane and the resonance parameters can be determined precisely without imposing unphysical parameters. Combined with the relativistic mean-field theory, this method is applied to probe the resonances in ^{120}Sn with the energies, widths, and wave functions being obtained.

View Article and Find Full Text PDF

Symmetry is an important and basic topic in physics. The similarity renormalization group theory provides a novel view to study the symmetries hidden in the Dirac Hamiltonian, especially for the deformed system. Based on the similarity renormalization group theory, the contributions from the nonrelativistic term, the spin-orbit term, the dynamical term, the relativistic modification of kinetic energy, and the Darwin term are self-consistently extracted from a general Dirac Hamiltonian and, hence, we get an accurate description for their dependence on the deformation.

View Article and Find Full Text PDF