Publications by authors named "Zhong-Ke Gao"

Article Synopsis
  • Researchers studied chimera states in spatiotemporal dynamical systems across various fields, aiming to understand how localized disturbances affect the system's evolution towards different stable states.
  • Their numerical analysis revealed that the system displays critical behavior over time, leaning toward either chimera states or synchronization, depending on the initial conditions and perturbation strengths.
  • They discovered that the transient time, which influences the system's stability, follows a power-law distribution and identified a unique pattern where the critical values for odd and even clusters converge towards a common point, suggesting a potential model for predicting this behavior.
View Article and Find Full Text PDF

The complex phase interactions of the two-phase flow are a key factor in understanding the flow pattern evolutional mechanisms, yet these complex flow behaviors have not been well understood. In this paper, we employ a series of gas-liquid two-phase flow multivariate fluctuation signals as observations and propose a novel interconnected ordinal pattern network to investigate the spatial coupling behaviors of the gas-liquid two-phase flow patterns. In addition, we use two network indices, which are the global subnetwork mutual information (I) and the global subnetwork clustering coefficient (C), to quantitatively measure the spatial coupling strength of different gas-liquid flow patterns.

View Article and Find Full Text PDF

Gas-liquid two-phase flow is polymorphic and unstable, and characterizing its flow behavior is a major challenge in the study of multiphase flow. We first conduct dynamic experiments on gas-liquid two-phase flow in a vertical tube and obtain multi-channel signals using a self-designed four-sector distributed conductivity sensor. In order to characterize the evolution of gas-liquid two-phase flow, we transform the obtained signals using the adaptive optimal kernel time-frequency representation and build a complex network based on the time-frequency energy distribution.

View Article and Find Full Text PDF
Article Synopsis
  • This research focuses on improving emotion recognition using EEG-based brain-computer interfaces by optimizing the selection of EEG channels.
  • The study employs a visibility graph and a genetic algorithm within a convolutional neural network to identify which EEG channels provide the most relevant information for accurate emotion recognition.
  • Results indicate that using a carefully chosen subset of EEG channels leads to better recognition performance than using all channels, showcasing a more efficient approach to emotion recognition in practical applications.
View Article and Find Full Text PDF

Driver fatigue is an important cause of traffic accidents, which has triggered great concern for detecting drivers' fatigue. Numerous methods have been proposed to fulfill this challenging task, including feature methods and machine learning methods. Recently, with the development of deep learning techniques, many studies achieved better results than traditional feature methods, and the combination of traditional methods and deep learning techniques gradually received attention.

View Article and Find Full Text PDF

The steady state motion visual evoked potential (SSMVEP)-based brain computer interface (BCI), which incorporates the motion perception capabilities of the human visual system to alleviate the negative effects caused by strong visual stimulation from steady-state VEP, has attracted a great deal of attention. In this paper, we design a SSMVEP-based experiment by Newton's ring paradigm. Then, we use the canonical correlation analysis and Support Vector Machines to classify SSMVEP signals for the SSMVEP-based electroencephalography (EEG) signal detection.

View Article and Find Full Text PDF

Driver fatigue is an important contributor to road accidents, and driver fatigue detection has attracted a great deal of attention on account of its significant importance. Numerous methods have been proposed to fulfill this challenging task, though, the characterization of the fatigue mechanism still, to a large extent, remains to be investigated. To address this problem, we, in this work, develop a novel Multiplex Limited Penetrable Horizontal Visibility Graph (Multiplex LPHVG) method, which allows in not only detecting fatigue driving but also probing into the brain fatigue behavior.

View Article and Find Full Text PDF

Constructing a reliable and stable emotion recognition system is a critical but challenging issue for realizing an intelligent human-machine interaction. In this study, we contribute a novel channel-frequency convolutional neural network (CFCNN), combined with recurrence quantification analysis (RQA), for the robust recognition of electroencephalogram (EEG) signals collected from different emotion states. We employ movie clips as the stimuli to induce happiness, sadness, and fear emotions and simultaneously measure the corresponding EEG signals.

View Article and Find Full Text PDF
Article Synopsis
  • Smart home technology improves living quality, and brain-computer interfaces (BCIs) enhance this system by using event-related potentials (ERPs) linked to user interaction through an image interface.
  • Research shows that mental fatigue decreases the accuracy of ERP classification, indicating a cognitive decline as users become tired.
  • By using multivariate weighted recurrence networks, researchers can differentiate between normal and mentally fatigued brain states, providing new insights into cognitive processes and the effects of prolonged use of BCI in smart homes.
View Article and Find Full Text PDF

Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior.

View Article and Find Full Text PDF

Characterizing the flow structure underlying the evolution of oil-in-water bubbly flow remains a contemporary challenge of great interests and complexity. In particular, the oil droplets dispersing in a water continuum with diverse size make the study of oil-in-water bubbly flow really difficult. To study this issue, we first design a novel complex impedance sensor and systematically conduct vertical oil-water flow experiments.

View Article and Find Full Text PDF

The exploration of the spatial dynamical flow behaviors of oil-water flows has attracted increasing interests on account of its challenging complexity and great significance. We first technically design a double-layer distributed-sector conductance sensor and systematically carry out oil-water flow experiments to capture the spatial flow information. Based on the well-established recurrence network theory, we develop a novel multiplex multivariate recurrence network (MMRN) to fully and comprehensively fuse our double-layer multi-channel signals.

View Article and Find Full Text PDF

Detecting epileptic seizure from EEG signals constitutes a challenging problem of significant importance. Combining adaptive optimal kernel time-frequency representation and visibility graph, we develop a novel method for detecting epileptic seizure from EEG signals. We construct complex networks from EEG signals recorded from healthy subjects and epilepsy patients.

View Article and Find Full Text PDF

Visibility graph has established itself as a powerful tool for analyzing time series. We in this paper develop a novel multiscale limited penetrable horizontal visibility graph (MLPHVG). We use nonlinear time series from two typical complex systems, i.

View Article and Find Full Text PDF

Exploring the dynamical behaviors of high water cut and low velocity oil-water flows remains a contemporary and challenging problem of significant importance. This challenge stimulates us to design a high-speed cycle motivation conductance sensor to capture spatial local flow information. We systematically carry out experiments and acquire the multi-channel measurements from different oil-water flow patterns.

View Article and Find Full Text PDF

Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency.

View Article and Find Full Text PDF

High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns.

View Article and Find Full Text PDF

In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles.

View Article and Find Full Text PDF

Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series.

View Article and Find Full Text PDF

Characterizing complex patterns arising from horizontal oil-water two-phase flows is a contemporary and challenging problem of paramount importance. We design a new multisector conductance sensor and systematically carry out horizontal oil-water two-phase flow experiments for measuring multivariate signals of different flow patterns. We then infer multivariate recurrence networks from these experimental data and investigate local cross-network properties for each constructed network.

View Article and Find Full Text PDF

The dynamics of two-phase flows have been a challenging problem in nonlinear dynamics and fluid mechanics. We propose a method to characterize and distinguish patterns from inclined water-oil flow experiments based on the concept of network motifs that have found great usage in network science and systems biology. In particular, we construct from measured time series phase-space complex networks and then calculate the distribution of a set of distinct network motifs.

View Article and Find Full Text PDF