Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are cytoplasmic sensors crucial for recognizing different species of viral RNAs, which triggers the production of type I interferons (IFNs) and inflammatory cytokines. Here, we identify RING finger protein 123 (RNF123) as a negative regulator of RIG-I and MDA5. Overexpression of RNF123 inhibits IFN-β production triggered by Sendai virus (SeV) and encephalomyocarditis picornavirus (EMCV).
View Article and Find Full Text PDFHost cells orchestrate the production of IFN-β upon detecting invading viral pathogens. Here, we report that Ring finger protein 166 (RNF166) potentiates RNA virus-triggered IFN-β production. Overexpression of RNF166 rather than its homologous proteins RNF114, RNF125, and RNF138, enhanced Sendai virus (SeV)-induced activation of the IFN-β promoter.
View Article and Find Full Text PDFRetinoic acid-inducible gene I (RIG-I) is a key sensor for recognizing nucleic acids derived from RNA viruses and triggers beta interferon (IFN-β) production. Because of its important role in antiviral innate immunity, the activity of RIG-I must be tightly controlled. Here, we used yeast two-hybrid screening to identify a SEC14 family member, SEC14L1, as a RIG-I-associated negative regulator.
View Article and Find Full Text PDFSci China C Life Sci
June 2009
The tumor suppressor p53 is a critical component of the DNA damage response pathway that induces a set of genes responsible for cell cycle arrest, senescence, apoptosis, and DNA repair. The ataxia telangiectasia mutated protein kinase (ATM) responds to DNA-damage stimuli and signals p53 stabilization and activation, thereby facilitating transactivation of p53 inducible genes and maintainence of genome integrity. In this study, we identified a CXXC zinc finger domain containing protein termed CF5 as a critical component in the DNA damage signaling pathway.
View Article and Find Full Text PDFRIG-I and MDA5 are cytoplasmic sensors that recognize different species of viral RNAs, leads to activation of the transcription factors IRF3 and NF-kappaB, which collaborate to induce type I interferons. In this study, we identified REUL, a RING-finger protein, as a specific RIG-I-interacting protein. REUL was associated with RIG-I, but not MDA5, through its PRY and SPRY domains.
View Article and Find Full Text PDFViral infection causes host cells to produce type I interferons (IFNs), which are critically involved in viral clearance. Previous studies have demonstrated that activation of the transcription factor interferon regulatory factor (IRF)3 is essential for virus-triggered induction of type I IFNs. Here we show that the E3 ubiquitin ligase RBCC protein interacting with PKC1 (RBCK1) catalyzes the ubiquitination and degradation of IRF3.
View Article and Find Full Text PDFInflammation is a homeostatic mechanism that limits the effects of infectious agents. Tumor necrosis factor (TNF) and interleukin (IL)-1 are two cytokines that induce inflammation through activation of the transcription factor NF-kappaB. Various studies have suggested that two homologous and structurally related adapter proteins TAB2 and TAB3 play redundant roles in TNF- and IL-1-mediated NF-kappaB activation pathways.
View Article and Find Full Text PDFDNA degradation is a biochemical hallmark in apoptosis. It has been demonstrated in many cell types that there are two stages of DNA fragmentation during the apoptotic execution. In the early stage, chromatin DNA is cut into large molecular weight DNA fragments, although the responsible nuclease(s) has not been recognized.
View Article and Find Full Text PDFP21(Waf1/Cip1) is a potent cyclin-dependent kinase inhibitor. As a downstream mediator of p53, p21(Waf1/Cip1) involves in cell cycle arrest, differentiation and apoptosis. Previous studies in human cells provided evidence for a link between p21(Waf1/Cip1) and cellular senescence.
View Article and Find Full Text PDFSheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)
January 2001
The human DNA fragmentation factor (DFF) is a heterodimer of 40 kD and 45 kD subunits. The 40 kD subunit (DFF40) has an intrinsic DNase activity responsible for the genomic DNA degradation into nucleosomal fragments during apoptosis. As an inhibitor for DFF40, the 45 kD subunit (DFF45) complexes with DFF40, inhibiting DNase activity until certain apoptosis signals are received.
View Article and Find Full Text PDFSheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)
January 2001
The human DNA fragmentation factor (DFF) is a heterodimer of 40 kD (DFF40/CAD) and 45 kD(DFF45/ICAD) subunits. Apoptotic DNA fragmentation and chromatin condensation are mediated by the caspase-activated DFF40 nuclease, which is inhibited by a chaperone-like subunit DFF45. In this work, the coding regions of human DFF45 and DFF40 mRNAs were amplified from total RNA of HeLa cells by RT-PCR.
View Article and Find Full Text PDF