Translation elongation factor P, expressed by the efp gene, is a conserved protein closely related to bacterial virulence and environmental stress regulation responses, however, little is known about the efp gene expression regulations. Here, the strain of Staphylococcus aureus subsp. aureus NCTC 8325 was taken as the research object and cultured under different conditions, including different culture temperatures, pH, and antibiotics, to study the expression of the efp gene in S.
View Article and Find Full Text PDFMicrobial reduction is an effective way to deal with hexavalent chromium [Cr(VI)] contamination in the environment, which can significantly mitigate the biotoxicity and migration of this pollutant. The present study investigated the influence of environmental factors on aqueous Cr(VI) removal by a newly isolated facultative anaerobic bacterium, sp. PY14, and revealed the reduction mechanism.
View Article and Find Full Text PDFBackground: Rodents are the predominant natural hosts of orthohantavirus and the source of human infection, hemorrhagic fever with renal syndrome (HFRS) caused by orthohantavirus is a severe public health problem in the Yichun region, Jiangxi Province, China. However, little information is known about the infection of orthohantavirus in humans and rodents, and the genetic characteristics of the epidemic orthohantavirus in the region.
Methods: The clinical data of HFRS cases in 2016-2021 was analyzed.
Microbially driven iron and sulfur geochemical cycles co-exist ubiquitously in subsurface environments and are of environmental relevance. Shewanella species (dissimilatory metal-reducing bacteria) are capable of reducing Fe(III)-(oxyhydr)oxide minerals and diverse sulfur sources using corresponding metabolic pathways and producing FeS secondary minerals. In spite of the ability in promoting bacterial extracellular electron transfer (EET), the specific role of FeS in mediating EET between microbe/mineral interface is still unclear.
View Article and Find Full Text PDFSynthesis of inorganic nanomaterials such as metal nanoparticles (MNPs) using various biological entities as smart nanofactories has emerged as one of the foremost scientific endeavors in recent years. The biosynthesis process is environmentally friendly, cost-effective and easy to be scaled up, and can also bring neat features to products such as high dispersity and biocompatibility. However, the biomanufacturing of inorganic nanomaterials is still at the trial-and-error stage due to the lack of understanding for underlying mechanism.
View Article and Find Full Text PDFJ Agric Food Chem
November 2019
Microbial degradation plays a major role in the dissipation of pendimethalin, and nitroreduction is an initial and detoxicating step. Previously, a pendimethalin nitroreductase, PNR, was identified in Y3. Here, another pendimethalin nitroreductase from strain Y3, LNR, was identified.
View Article and Find Full Text PDFTwo-component systems (TCSs) are highly conserved in prokaryotes, endowing cells with multiple physiological functions to respond to changes in the ambient environment. The signaling pathway of a typical TCS consists of a sensory histidine kinase and a response regulator. The TCSs of Kocuria rhizophila, which is usually used as a target strain for various antibiotics and other adverse factors, have captured our interest due to their potential roles in bacterial adaptation for survival.
View Article and Find Full Text PDFThe extracellular electron transfer (EET) that connects the intracellular metabolism of electroactive microorganisms to external electron donors/acceptors, is the foundation to develop diverse microbial electrochemical technologies. For a particular microbial electrochemical device, the surface chemical property of an employed electrode material plays a crucial role in the EET process owing to the direct and intimate biotic-abiotic interaction. The functional modification of an electrode surface with redox mediators has been proposed as an effectual approach to promote EET, but the underlying mechanism remains unclear.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2018
Microbial electrochemical system (MES) has attracted ever-growing interest as a promising platform for renewable energy conversion and bioelectrochemical remediation. Shewanella species, the dissimilatory metal reduction model bacteria with versatile extracellular electron transfer (EET) strategies, are the well-received microorganisms in diverse MES devices for various practical applications as well as microbial EET mechanism investigation. Meanwhile, the available genomic information and the unceasing established gene-editing toolbox offer an unprecedented opportunity to boost the applications of Shewanella species in MES.
View Article and Find Full Text PDFThe extracellular electron transfer (EET) process of Shewanella species is believed to be indispensable for their anaerobic respiration with an electrode. However, the function of outer membrane c-type cytochromes (OM c-Cyts, the primary components of the EET pathway) is still controversial. In this study, we investigated the effect of two OM c-Cyts (MtrC and UndA) of Shewanella putrefaciens CN32 with respect to electricity production and anodic EET efficiency.
View Article and Find Full Text PDFThe ftsZ gene from Xanthomonas oryzae pv. Oryzae was amplified by PCR with the specific primers, and the recombinant plasmid pET-22b-ftsZ was constructed successfully. The FtsZ with a 6× His tag was overexpressed in a soluble form in Escherichia coli BL21 and purified through a Ni-NTA agarose column.
View Article and Find Full Text PDFMicromonospora carbonacea JXNU-1 is an actinomycete with broad-spectrum antimicrobial activity, isolated from soil samples from the farmland in the area of Yaohu Lake in Nanchang, China. Here, we report the whole-genome sequence of M. carbonacea JXNU-1.
View Article and Find Full Text PDFPVA-cryogels entrapping about 10(9) cells of Acidithiobacillus ferrooxidans per ml of gel were prepared by freezing-thawing procedure, and the biooxidation of Fe2+ by immobilized cells was investigated in a 0.365 l packed-bed bioreactor. Fe2+ oxidation fits a plug-flow reaction model well.
View Article and Find Full Text PDF