Aging (Albany NY)
March 2024
Stem cell therapy requires massive-scale homogeneous stem cells under strict qualification control. However, Prolonged expansion impairs the biological functions and results in senescence of mesenchymal stem cells (MSCs). We investigated the function of CTDSPL in the premature senescence process of MSCs and clarified that miR-18a-5p played a prominent role in preventing senescence of long-term cultured MSCs and promoting the self-renewal ability of MSCs.
View Article and Find Full Text PDFOvercoming drug resistance in cancer therapies remains challenging, and the tumor microenvironment plays an important part in it. Microvesicles (MVs) are functional natural carriers of cellular information, participate in intercellular communication, and dynamically regulate the tumor microenvironment. They contribute to drug resistance by transferring functional molecules between cells.
View Article and Find Full Text PDFThe safe and effective delivery of drugs is a major obstacle in the treatment of ischemic stroke. Exosomes hold great promise as an endogenous drug delivery nanosystem for the treatment of cerebral ischemia given their unique properties, including low immunogenicity, innate stability, high delivery efficiency, and ability to cross the blood-brain barrier (BBB). However, exosome insufficient targeting capability limits their clinical applications.
View Article and Find Full Text PDFDifferentiation of neural lineages from mesenchymal stem cells has raised the hope of generating functional cells as seed cells for nerve tissue engineering. As important gene regulators, microRNAs (miRNAs) have been speculated to play a vital role in accelerating stem cell differentiation and repairing neuron damage. However, miRNA roles in directing differentiation of stem cells in current protocols are underexplored and the mechanisms of miRNAs as regulators of neuronal differentiation remain ambiguous.
View Article and Find Full Text PDFPoly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has received much attention for its biodegradability and biocompatibility, characteristics that are required in tissue engineering. In this study, polyethylene oxide (PEO)-incorporated PHBV nanofibres with random or aligned orientation were obtained by electrospinning. For further use in vivo, the nanofibre films were made into nerve conduits after treatment with NH plasma, which could improve the hydrophilicity of inner surfaces of nerve conduits and then facilitate laminin adsorption via electrostatic interaction for promoting cell adhesion and proliferation.
View Article and Find Full Text PDFRecently, we have successfully obtained functional IPCs efficiently from umbilical cord blood-derived mesenchymal stem cells by using hypoxia treatment. In this study, we further elaborated that the improved function and viability of IPCs are the result of the interaction β cell development pathway and c-Met/HGF axis induced by hypoxia. We found that hypoxia induced c-MET elevation is efficiently initiated the early stage differentiation IPCs from MSCs, and HGF improved the fully differentiation of IPCs by inducing the expression of NGN3.
View Article and Find Full Text PDFEfficient and effective therapies are required for diabetes mellitus. The use of adult stem cells for treating diabetes represents a major focus of current research. We have attempted to differentiate adult stem cells produced from umbilical cord blood-derived stromal cells into insulin-producing cells (IPCs).
View Article and Find Full Text PDFThough nanomaterials are considered as drug carriers or imaging reagents targeting the central nervous system their cytotoxicity effect on neuronal cells has not been well studied. In this study, we treated PC12 cells, a model neuronal cell line, with a nanomaterial that is widely accepted for medical use, superparamagnetic iron oxide nanoparticles (SPIONs). Our results suggest that, after treated with SPIONs, the expression pattern of the cellular miRNAs changed widely in PC12 cells.
View Article and Find Full Text PDFMicroRNAs (miRNAs), a class of small RNAs, are important molecules that influence several developmental processes and regulate RNA interference (RNAi), and are abundant in animals, plants, and plant tissues that are traditionally consumed in the diet. The survival of plant small RNAs from the diet in animals, however, remains unclear, and the persistence of miRNAs from dietary plants in the animal gastrointestinal (GI) tract is still under debate. In this study, ICR mice were fed plant total RNAs in quantities of 10-50 μg, extracted from Brassica oleracea.
View Article and Find Full Text PDFExosomes are nanoscale membrane vesicles secreted from many types of cells. Carrying functional molecules, exosomes transfer information between cells and mediate many physiological and pathological processes. In this report, utilizing selective inhibitors, molecular tools, and specific endocytosis markers, the cellular uptake of PC12 cell-derived exosomes was imaged by high-throughput microscopy and statistically analyzed.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) regulate many biological processes by post-translational gene silencing. Analysis of miRNA expression profiles is a reliable method for investigating particular biological processes due to the stability of miRNA and the development of advanced sequencing methods. However, this approach is limited by the broad specificity of miRNAs, which may target several mRNAs.
View Article and Find Full Text PDFAmong a variety of polymers, poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a microbial polyester, with biodegradable, nonantigenic, and biocompatible properties, is attracting more and more attention in tissue engineering. Hydroxyapatite (HA), similar to the mineral component of natural bone, is known to be osteoconductive, nontoxic, and noninflammatory. In this study, aligned and random-oriented PHBV nanofibrous scaffolds loaded with HA nanoparticles were fabricated through electrospinning technique.
View Article and Find Full Text PDFCells release exosomes into extracellular medium. Although the important roles of exosomes in many physiological and pathological processes are being revealed, the mechanism of exosome-cell interaction remains unclear. In this article, employing real-time fluorescence microscopy, the motion of exosomes on the plasma membrane or in the cytoplasm of recipient PC12 cells was observed directly.
View Article and Find Full Text PDFMicroenvironments in which cells live play an important role in the attachment, growth and interactions of cells. To mimic the natural structure of extracellular matrices, electrospinning was applied to fabricate biomaterials into ultrafine fibers. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biocompatible and biodegradable polyester, has been shown to be an excellent biomaterial candidate for tissue engineering.
View Article and Find Full Text PDFSodium butyrate (NaBu) is regarded as a potential reagent for cancer therapy. In this study, a specific breast cancer cell population that is resistant NaBu treatment was identified. These cells possess cancer stem cell characters, such as the capability of sphere formation in vitro and high tumor incident rate (85%) in mouse model.
View Article and Find Full Text PDFThe biggest challenge in the field of gene therapy is how to effectively deliver target genes to special cells. This study aimed to develop a new type of poly(D,L-lactide-co-glycolide) (PLGA)-based nanoparticles for gene delivery, which are capable of overcoming the disadvantages of polyethylenimine (PEI)- or cationic liposome-based gene carrier, such as the cytotoxicity induced by excess positive charge, as well as the aggregation on the cell surface. The PLGA-based nanoparticles presented in this study were synthesized by emulsion evaporation method and characterized by transmission electron microscopy, dynamic light scattering, and energy dispersive spectroscopy.
View Article and Find Full Text PDFPoly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biodegradable polyester, has been a good candidate of biomaterial employed in tissue engineering. However, the PHBV film is hydrophobic and has no recognition sites for cell attachment. In this study, PHBV films are activated by ammonia plasma treatment to produce amino groups on the surface, followed by sequential reactions with a heterobifunctional cross-linker containing a segment of poly(ethylene glycol) (PEG) and further with RGD-containing peptides.
View Article and Find Full Text PDFAligned and randomly oriented chitosan nanofibers were prepared by electrospinning. The fibers were modified with the RGD cell-adhesive peptide through a heterobifunctional crosslinker containing a segment of poly(ethylene glycol) (PEG). PEG rendered the surface hydrophilic and provided flexible spacers, allowing the preservation of the bioactivity of further captured RGD peptides.
View Article and Find Full Text PDFPorous silicon (PS) was incubated in an organic solution of metal acetylacetonates of Mn(acac)(3), Fe(acac)(3), Co(acac)(3), and Ni(acac)(2) (acac = MeCOCHCOMe) at room temperature. Crystal-like domains were found to be spontaneously self-assembled on PS surfaces by atomic force microscopy (AFM). Spectroscopic studies with attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) revealed that the domains were grown from metal acetylacetonates.
View Article and Find Full Text PDFSheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)
January 1997
A novel method for the preparation of unilamellar immunoliposomes is introduced. In this method, the aqueous phase is first encapsulated into reverse micelles passing through the oil-water interface, where the monolayer of lecithin embedded with antibody has been formed to self-assemble into immunoliposomes. The main advantages of this method are that the procedure of preparation is simple with high encapsulation yield and it is favorable for large scale production.
View Article and Find Full Text PDF