Objective: Human embryonic stem cells (hESCs) have recently been reported as an unlimited source of mesenchymal stem cells (MSCs). The present study not only provides an identical and clinically compliant MSC source derived from hESCs (hESC-MSCs), but also describes the immunomodulative effects of hESC-MSCs in vitro and in vivo for a carbon tetrachloride (CCl(4))-induced liver inflammation model.
Methods: Undifferentiated hESCs were treated with Rho-associated kinase (ROCK) inhibitor and induced to fibroblast-looking cells.
Bone marrow-derived mesenchymal stem cells are multipotent stem cells, an attractive resource for regenerative medicine. Accumulating evidence suggests that all-trans retinoic acid plays a key role in the development and differentiation of smooth muscle cells. In the present study, we demonstrate, for the first time, that rabbit bone marrow-derived mesenchymal stem cells differentiate into smooth muscle cells upon the treatment with all-trans retinoic acid.
View Article and Find Full Text PDFUnlabelled: It is suggested that nanophase hydroxyapatite (nHAP) might have advantages over conventional hydroxyapatite (cHAP) as a biomaterial for bone regeneration. To be a satisfactory candidate for bone tissue engineering, it is important to support the growth and differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). The purpose of this study is to determine whether nHAP as cell growth substrata could give better support for attachment, proliferation and osteogenic differentiation of BMSCs than cHAP.
View Article and Find Full Text PDF