Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers.
View Article and Find Full Text PDFAs a nondestructive and ultrasensitive technique, surface-enhanced Raman spectroscopy (SERS) has captivated the attention of the global scientific community for over 50 years. Among the various spectroscopic techniques derived from SERS, shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) stands as a cutting-edge advancement. The innovative and versatile core-shell nanoparticle structures used in SHINERS have emerged as an ideal platform for interfacial research, offering high sensitivity and broad applicability across diverse materials and single-crystal surfaces.
View Article and Find Full Text PDFEntropy during the dynamic structural evolution of catalysts has a non-trivial influence on chemical reactions. Confinement significantly affects the catalyst dynamics and thus impacts the reactivity. However, a full understanding has not been clearly established.
View Article and Find Full Text PDFCatalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential.
View Article and Find Full Text PDFSingle-molecule diode was the first proposed device in molecular electronics. Despite the great efforts and advances over 50 years, the reported rectification ratios, the most critical parameter of a diode, remain moderate for the single-molecule diode. Herein, we report an approach to achieve a larger rectification ratio by adopting the combined strategies of p-type boron doping, the single-layer graphene nodes, and the van der Waals layer-by-layer architecture.
View Article and Find Full Text PDFThe understanding of the interfacial processes is critically important for extending the practical application of ionic liquids, particularly for the role of interfacial water. In the electrochemical system based on ionic liquid electrolytes, small amounts of water at the interface generate a significant change in the electrochemical behaviors of ionic liquids. Therefore, the investigation on the interfacial behavior of water is highly desired in ionic liquids with different anions, water content, and hydrophilicity.
View Article and Find Full Text PDFContact Electro-Catalysis (CEC) using commercial dielectric materials in contact-separation cycles with water can trigger interfacial electron transfer and induce the generation of reactive oxygen species (ROS). However, the inherent hydrophobicity of commercial dielectric materials limits the effective reaction sites, and the generated ROS inevitably undergo self-combination to form hydrogen peroxide (HO). In typical CEC systems, HO does not further decompose into ROS, leading to suboptimal reaction rates.
View Article and Find Full Text PDFSingle cell amperometry has proven to be a powerful and well-established method for characterizing single vesicular exocytotic events elicited at the level of excitable cells under various experimental conditions. Nevertheless, most of the reported characteristics are descriptive, being mostly concerned with the morphological characteristics of the recorded current spikes (maximum current intensities, released charge, rise and fall times, ) which are certainly important but do not provide sufficient kinetic information on exocytotic mechanisms due to lack of quantitative models. Here, continuing our previous efforts to provide rigorous models rationalizing the kinetic structures of frequently encountered spike types (spikes with unique exponential decay tails and kiss-and-run events), we describe a new theoretical approach enabling a quantitative kinetic modeling of all types of exocytotic events giving rise to current spikes exhibiting exponential decay tails.
View Article and Find Full Text PDFMetal oxides are promising (photo)electrocatalysts for sustainable energy technologies due to their good activity and abundant resources. Their applications such as photocatalytic water splitting predominantly involve aqueous interfaces under electrochemical conditions, but probing oxide-water interfaces is proven to be extremely challenging. Here, we present an electrochemical scanning tunneling microscopy (EC-STM) study on the rutile TiO(110)-water interface, and by tuning surface redox chemistry with careful potential control we are able to obtain high quality images of interfacial structures with atomic details.
View Article and Find Full Text PDFThe microscopic structure of the material's solid-liquid interface significantly influences its physicochemical properties. Peak force infrared microscopy (PFIR) is a powerful technique for analyzing these interfaces at the nanoscale, revealing crucial structure-activity relationships. PFIR is recognized for its explicit photothermal signal generation mechanism but tends to overlook other photoinduced forces, which can disturb the obtained infrared spectra, thereby reducing spectral signal-to-noise ratio (SNR) and sensitivity.
View Article and Find Full Text PDFPlasmon-mediated chemical reactions (PMCR) have garnered growing interest as a promising concept for photocatalysis. However, in electrochemical systems at solid-liquid interfaces, the photo-induced charge transfer on the surface of metal-semiconductor heterostructures involves complex processes and mechanisms, which are still poorly understood. We explore the plasmon-mediated carrier transfer mechanism and the synergistic effect of light and electric fields on Ag-TiO heterostructures, through a combination of electrochemical surface-enhanced Raman spectroscopy and photoelectrochemical methods, with para-aminothiophenol (PATP) serving as a probe molecule.
View Article and Find Full Text PDFFast and efficient sample pretreatment is the prerequisite for realizing surface-enhanced Raman spectroscopy (SERS) detection of trace targets in complex matrices, which is still a big issue for the practical application of SERS. Recently, we have proposed a highly performed liquid-liquid extraction (LLE)-back extraction (BE) for weak acids/bases extraction in drinking water and beverage samples. However, the performance efficiency decreased drastically on facing matrices like food and biological blood.
View Article and Find Full Text PDFPalladium hydrides (PdH) are pivotal in both fundamental research and practical applications across a wide spectrum. PdH nanocrystals, synthesized by heating in dimethylformamide (DMF), exhibit remarkable stability, granting them widespread applications in the field of electrocatalysis. However, this stability appears inconsistent with their metastable nature.
View Article and Find Full Text PDFCopper is widely used in everyday life and industrial production because of its good electrical and thermal conductivity. To overcome copper oxidation and maintain its good physical properties, small organic molecules adsorbed on the surface of copper make a passivated layer to further avoid copper corrosion. In this work, we have investigated thioglycolic acid (TGA, another name is mercaptoacetic acid) adsorbed on copper surfaces by using density functional theory (DFT) calculations and a periodical slab model.
View Article and Find Full Text PDFThere is growing interest in developing a high-performance self-supervised denoising algorithm for real-time chemical hyperspectral imaging. With a good understanding of the working function of the zero-shot Noise2Noise-based denoising algorithm, we developed a self-supervised Signal2Signal (S2S) algorithm for real-time denoising with a single chemical hyperspectral image. Owing to the accurate distinction and capture of the weak signal from the random fluctuating noise, S2S displays excellent denoising performance, even for the hyperspectral image with a spectral signal-to-noise ratio (SNR) as low as 1.
View Article and Find Full Text PDFDue to the superior catalytic activity and efficient utilization of noble metals, nanocatalysts are extensively used in the modern industrial production of chemicals. The surface structures of these materials are significantly influenced by reactive adsorbates, leading to dynamic behavior under experimental conditions. The dynamic nature poses significant challenges in studying the structure-activity relations of catalysts.
View Article and Find Full Text PDFUnconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS, WSe, MoS and MoSe, via a facile and rapid wet-chemical method.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2024
The conversion of methane under ambient conditions has attracted significant attention. Although advancements have been made using active oxygen species from photo- and electro- chemical processes, challenges such as complex catalyst design, costly oxidants, and unwanted byproducts remain. This study exploits the concept of contact-electro-catalysis, initiating chemical reactions through charge exchange at a solid-liquid interface, to report a novel process for directly converting methane under ambient conditions.
View Article and Find Full Text PDFSixty years ago, Reddy, Devanatan, and Bockris performed the first electrochemical ellipsometry experiment, which ushered in a new era in the study of electrochemistry, using optical spectroscopy. After six decades of development, electrochemical optical spectroscopy, particularly electrochemical vibrational spectroscopy, has advanced from a phase of immaturity with few methods and limited applications to a phase of maturity with excellent substrate generality and significantly improved resolutions. Here, we divide the development of electrochemical optical spectroscopy into four phases, focusing on the proof-of-concept of different electrochemical optical spectroscopy studies, the emergence of plasmonic enhancement-based electrochemical optical spectroscopic (in particular vibrational spectroscopic) methods, the realization of electrochemical vibrational spectroscopy on well-defined surfaces, and the efforts to achieve spectroelectrochemical applications.
View Article and Find Full Text PDFMolecular assembly is the process of organizing individual molecules into larger structures and complex systems. The self-assembly approach is predominantly utilized in creating artificial molecular assemblies, and was believed to be the primary mode of molecular assembly in living organisms as well. However, it has been shown that the assembly of many biological complexes is "catalysed" by other molecules, rather than relying solely on self-assembly.
View Article and Find Full Text PDFCharged microdroplets offer novel electrochemical environments, distinct from traditional solid-liquid or solid-liquid-gas interfaces, due to the intense electric fields at liquid-gas interfaces. In this study, we propose that charged microdroplets serve as microelectrochemical cells (MECs), enabling unique electrochemical reactions at the gas-liquid interface. Using electrospray-generated microdroplets, we achieved multielectron CO reduction and C-C coupling to synthesize ethanol using molecular catalysts.
View Article and Find Full Text PDF