Corticotropin-releasing factor (CRF) is a neuropeptide mainly synthesized in the hypothalamic paraventricular nucleus and has been traditionally implicated in stress and anxiety. Intriguingly, genetic or pharmacological manipulation of CRF receptors affects locomotor activity as well as motor coordination and balance in rodents, suggesting an active involvement of the central CRFergic system in motor control. Yet little is known about the exact role of CRF in central motor structures and the underlying mechanisms.
View Article and Find Full Text PDFVestibular compensation is responsible for the spontaneous recovery of postural, locomotor, and oculomotor dysfunctions in patients with peripheral vestibular lesion or posterior circulation stroke. Mechanism investigation of vestibular compensation is of great importance in both facilitating recovery of vestibular function and understanding the postlesion functional plasticity in the adult CNS. Here, we report that postsynaptic histamine H1 receptor contributes greatly to facilitating vestibular compensation.
View Article and Find Full Text PDFIt is shown that in density functional theory (DFT), Koopmans' theorem for a large molecular system can be stated as follows: The ionization energy of the system equals the negative of the highest occupied molecular orbital (HOMO) energy plus the Coulomb electrostatic energy of removing an electron from the system, or equivalently, the ionization energy of an N-electron system is the negative of the arithmetic average of the HOMO energy of this system and the lowest unoccupied molecular orbital (LUMO) energy of the (N - 1)-electron system. Relations between this DFT Koopmans' theorem and its existing counterparts in the literature are discussed. Some of the previous results are generalized and some are simplified.
View Article and Find Full Text PDFIt is shown from Kohn-Sham (KS) density-functional theory that in a large molecular system, the Coulomb potential, molecular electrostatic potential, and KS effective potential may exhibit an approximately homogeneous variation in space, in response to a small change of the electron number. The homogeneous variation of potentials underlies the constant interaction (CI) model of quantum dots (QDs) and is related to the delocalization and invariance of KS orbitals, the identical shift of KS levels, and a natural definition of the QD capacitance. Calculation results of a fullerene C60 and a single-walled carbon nanotube are presented.
View Article and Find Full Text PDF