Publications by authors named "Zhong Chang Wu"

Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite.

View Article and Find Full Text PDF

Arsenic (As) contamination in a paddy environment can cause phytotoxicity and elevated As accumulation in rice (Oryza sativa). The mechanism of As detoxification in rice is still poorly understood. We isolated an arsenate (As(V))-sensitive mutant of rice.

View Article and Find Full Text PDF

Although seed dormancy is an important agronomic trait, its molecular basis is poorly understood. ABSCISIC ACID INSENSITIVE 3 (ABI3) plays an essential role in the establishment of seed dormancy. Here, we show that the lack of a seed-expressed WRKY transcription factor, WRKY41, confers reduced primary seed dormancy and thermoinhibition, phenotypes resembling those for a lack of ABI3.

View Article and Find Full Text PDF

Root gravitropism is one of the important factors to determine root architecture. To understand the mechanism underlying root gravitropism, we isolated a rice (Xiushui63) mutant defective in root gravitropism, designated as gls1. Vertical sections of root caps revealed that gls1 mutant displayed normal distribution of amyloplast in the columella cells compared with the wild type.

View Article and Find Full Text PDF

Novel bacterial blight (BB) resistance gene(s) for rice was (were) introduced into a cultivated japonica rice variety Oryza sativa (cv. 8411), via somatic hybridization using the wild rice Oryza meyeriana as the donor of the resistance gene(s). Twenty-nine progenies of somatically hybridized plants were obtained.

View Article and Find Full Text PDF