Publications by authors named "Zhizhuang J Zhao"

Article Synopsis
  • FLT3 mutations are common in AML, making them a key target for therapy, but resistance to FLT3 inhibitors is a significant challenge.
  • Tyrosine kinase inhibitors (TKIs) promote p53 degradation in FLT3-ITD AML cells through mechanisms involving STAT5 and MDM2, disrupting p53's role as a tumor suppressor.
  • Using MDM2 inhibitors alongside TKIs can stabilize p53 levels, enhancing the effectiveness of treatments and suggesting a promising combination approach for AML therapy.
View Article and Find Full Text PDF

Protein zero related (PZR) serves as a substrate and anchor protein for SHP-2, the product of the proto-oncogene PTPN11 that is frequently mutated in cancers. The expression level of PZR is elevated in various cancers, which is correlated with an unfavorable prognosis. The role of PZR in lung cancer is not fully studied.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a hematological malignancy characterized by the impaired differentiation and uncontrolled proliferation of myeloid blasts. Tumor suppressor p53 is often downregulated in AML cells via ubiquitination-mediated degradation. While the role of E3 ligase MDM2 in p53 ubiquitination is well-accepted, little is known about the involvement of deubiquitinases (DUBs).

View Article and Find Full Text PDF

PZR is a transmembrane glycoprotein encoded by the gene. It serves as a specific binding protein and substrate of tyrosine phosphatase SHP-2 whose mutations cause developmental diseases and cancers. Bioinformatic analyses of cancer gene databases revealed that PZR is overexpressed in lung cancer and correlated with unfavorable prognosis.

View Article and Find Full Text PDF

Leukemogenic SHP2 mutations occur in 35% of patients with juvenile myelomonocytic leukemia (JMML), a hematopoietic malignancy with poor response to cytotoxic chemotherapy. Novel therapeutic strategies are urgently needed for patients with JMML. Previously, we established a novel cell model of JMML with HCD-57, a murine erythroleukemia cell line that depends on EPO for survival.

View Article and Find Full Text PDF

In Brief: The establishment and maintenance of embryo implantation and pregnancy require decidualization of endometrial stromal cells. This paper reveals that SHP2 ensures the correct subcellular localization of progesterone receptor, thereby safeguarding the process of decidualization.

Abstract: Decidualization is the process of conversion of endometrial stromal cells into decidual stromal cells, which is caused by progesterone production that begins during the luteal phase of the menstrual cycle and then increases throughout pregnancy dedicated to support embryonic development.

View Article and Find Full Text PDF

Leukemogenic SHP2 mutations occur in 35% of patients with juvenile myelomonocytic leukemia (JMML), a rare but fatal hematopoietic malignancy without representative cell models, which are urgently needed to investigate the pathogenesis and to develop novel therapeutic strategies. In this study, we established stable cell lines with aberrant signaling resembling SHP2-mutant JMML through retroviral expression of SHP2-D61Y/E76K in HCD-57 cells, a murine erythroleukemia cell line that depends on erythropoietin (EPO) for survival. SHP2-D61Y/E76K drives the survival and proliferation of HCD-57 cells in the absence of EPO, but not in Ba/F3 cells in the absence of IL-3.

View Article and Find Full Text PDF

Background: Inadequate immunity caused by poor immune surveillance leads to tumorigenesis, while excessive immunity due to breakdown of immune tolerance causes autoimmune genesis. Although the function of immunity during the onset of these two processes appears to be distinct, the underlying mechanism is shared. To date, gene expression data for large bodies of clinical samples are available, but the resemblances of tumorigenesis and autoimmune genesis in terms of immune responses remains to be summed up.

View Article and Find Full Text PDF

Background: Gastrointestinal stromal tumor (GIST) is a rare type of cancer that occurs in the gastrointestinal tract. The majority of GIST cases carry oncogenic forms of KIT, the receptor for stem cell factor (SCF). Small molecule kinase inhibitor imatinib is effective in prolonging the survival of GIST patients by targeting KIT.

View Article and Find Full Text PDF

Myeloproliferative neoplasms (MPNs) transform to myelofibrosis (MF) and highly lethal acute myeloid leukemia (AML), although the actionable mechanisms driving progression remain elusive. Here, we elucidate the role of the high mobility group A1 (HMGA1) chromatin regulator as a novel driver of MPN progression. HMGA1 is upregulated in MPN, with highest levels after transformation to MF or AML.

View Article and Find Full Text PDF

Platelets are essential components in the tumor microenvironment. For decades, clinical data have demonstrated that cancer patients have a high risk of thrombosis that is associated with adverse prognosis and decreased survival, indicating the involvement of platelets in cancer progression. Increasing evidence confirms that cancer cells are able to induce production and activation of platelets.

View Article and Find Full Text PDF

Receptor tyrosine kinase ROR1 plays an essential role in embryogenesis and is overexpressed in many types of malignant tumors. Studies have demonstrated that it plays an important role in oncogenesis by activating cell survival signaling events, particularly the non-canonical WNT signaling pathway. Antibody-based immunotherapies targeting ROR1 have been developed and evaluated in preclinical and clinical studies with promising outcomes.

View Article and Find Full Text PDF

It was previously published that single-nucleotide polymorphism rs2476601 ( [protein tyrosine phosphatase non-receptor type 22]-C1858T) might be related to increased sensibility to and infection. However, the results were inconclusive despite a high degree of similarity between both parameters. Herein, we carried out this meta-analysis to systematically summarize and articulate the correlation between -C1858T polymorphism and mycobacterial infection.

View Article and Find Full Text PDF

Background: Most patients with acute myeloid leukemia (AML) remain uncurable and require novel therapeutic methods. Gain-of-function FMS-like tyrosine kinase 3 (FLT3) mutations are present in 30-40% of AML patients and serve as an attractive therapeutic target. In addition, FLT3 is aberrantly expressed on blasts in > 90% of patients with AML, making the FLT3 ligand-based drug conjugate a promising therapeutic strategy for the treatment of patients with AML.

View Article and Find Full Text PDF

Macrophages play a crucial role in host innate immune defense against infection and tissue injury. Macrophages are highly plastic cells and their subtypes have been characterized as M1 (also termed classically activated) and M2 (alternatively activated). Although the M1/M2 paradigm has been well documented, less is known regarding the role of macrophage activation/polarization in inflammation-associated necrotic cell death.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is a malignant hematological neoplasm of myeloid progenitor cells. Mutations of FLT3 in its tyrosine kinase domain (FLT3-TKD) are found in ~ 8% of patients with AML, with D835Y as the most common substitution. This mutation activates survival signals that drives the disease and is resistant to the first generation FLT3 inhibitors.

View Article and Find Full Text PDF

Background: Myeloid leukemia represents a heterogeneous group of cancers of blood and bone marrow which arise from clonal expansion of hematopoietic myeloid lineage cells. Acute myeloid leukemia (AML) has traditionally been treated with multi-agent chemotherapy, but conventional therapies have not improved the long-term survival for decades. Chronic myeloid leukemia (CML) is an indolent disease which requires lifelong treatment, is associated with significant side effects, and carries a risk of progression to potentially lethal blast crises.

View Article and Find Full Text PDF

The myeloproliferative neoplasms, polycythemia vera, essential thrombocytosis and primary myelofibrosis are hematopoietic stem cell disorders and share driver mutations that either directly activate the thrombopoietin receptor, MPL, or activate it indirectly through gain-of-function mutations in the gene for JAK2, its cognate tyrosine kinase. Paradoxically, MPL surface expression in hematopoietic stem cells is also reduced in the myeloproliferative neoplasms due to abnormal post-translational glycosylation and premature destruction of JAK2, suggesting that the myeloproliferative neoplasms are disorders of MPL processing since MPL is the only hematopoietic growth factor receptor in hematopoietic stem cells. To examine this possibility, we genetically manipulated MPL expression and maturation in a JAK2V617F transgenic mouse model of polycythemia vera.

View Article and Find Full Text PDF

Presenilin-associated protein (PSAP) was originally identified as a mitochondrial proapoptotic protein. To further explore the apoptotic pathway that involves PSAP, our yeast two-hybrid screen revealed that PSAP interacts with a death receptor, DR6. DR6 is a relatively less common member of the death receptor family and has been shown to mediate the neurotoxicity of amyloid-β, mutant SOD1, and prion proteins and has also been implicated in the regulation of immune cell proliferation and differentiation.

View Article and Find Full Text PDF

2019-nCoV is a newly identified coronavirus with high similarity to SARS-CoV. We performed a structural analysis of the receptor binding domain (RBD) of spike glycoprotein responsible for entry of coronaviruses into host cells. The RBDs from the two viruses share 72% identity in amino acid sequences, and molecular simulation reveals highly similar ternary structures.

View Article and Find Full Text PDF

Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by cytopenia and extramedullary hematopoiesis, resulting in splenomegaly. Multiple pathological mechanisms (e.g.

View Article and Find Full Text PDF