Electrical synapses provide rapid, bidirectional communication in nervous systems, accomplishing tasks distinct from and complementary to chemical synapses. Here, we demonstrate an artificial electrical synapse based on second-order conductance transition (SOCT) in an Ag-based memristor for the first time. High-resolution transmission electron microscopy indicates that SOCT is mediated by the virtual silver electrode.
View Article and Find Full Text PDFNeuromorphic computing systems have shown powerful capability in tasks, such as recognition, learning, classification and decision-making, which are both challenging and inefficient in using the traditional computation architecture. The key elements including synapses and neurons, and their feasible hardware implementation are essential for practical neuromorphic computing. However, most existing synaptic devices used to emulate functions of a single synapse and the synapse-based networks are more energy intensive and less sustainable than their biological counterparts.
View Article and Find Full Text PDFThe field of neuromorphic computing systems has been through enormous progress in recent years, whereas some issues are still remaining to be solved. One of the biggest challenges in neuromorphic circuit designing is the lack of a robust device with functions comparable to or even better than the metal-oxide-semiconductor field-effect transistor (MOSFET) used in traditional integrated circuits. In this work, we demonstrated a MoS neuristor using a dual-gate transistor structure.
View Article and Find Full Text PDFRetina shows an extremely high signal processing efficiency because of its specific signal processing strategy which called computing in sensor. In retina, photoreceptor cells encode light signals into spikes and ganglion cells finish the shape perception process. In order to realize the neuromorphic vision sensor, the one-transistor-one-memristor (1T1M) structure which formed by one memristor and one MOSFET in serial is used to construct photoreceptor cell and ganglion cell.
View Article and Find Full Text PDFA resistive switching device with inherent nonlinear characteristics through a delicately engineered interfacial layer is an ideal component to be integrated into passive crossbar arrays for the suppression of sneaking current, especially in ultra-dense 3D integration. In this paper, we demonstrated a TaO-based bipolar resistive switching device with a nearly symmetrical bi-directional nonlinear feature through interface engineering. This was accomplished by introducing an ultra-thin interfacial layer (SiO) with unique features, including a large band gap and a certain level of negative heat of oxide formation between the top electrode (TiN) and resistive layer (TaO).
View Article and Find Full Text PDFAnimals' survival is dependent on their abilities to adapt to the changing environment by adjusting their behaviours, which is related to the ubiquitous learning behaviour, nonassociative learning. Thus mimicking the indispensable learning behaviour in organisms based on electronic devices is vital to better achieve artificial neural networks and neuromorphic computing. Here a three terminal device consisting of an oxide-based memristor and a NMOS transistor is proposed.
View Article and Find Full Text PDFA novel vertical 3D RRAM structure with greatly improved reliability behavior is proposed and experimentally demonstrated through basically compatible process featuring self-localized switching region by sidewall electrode oxidation. Compared with the conventional structure, due to the effective confinement of the switching region, the newly-proposed structure shows about two orders higher endurance (>10(8) without verification operation) and better retention (>180h@150 °C), as well as high uniformity. Corresponding model is put forward, on the base of which thorough theoretical analysis and calculations are conducted as well, demonstrating that, resulting from the physically-isolated switching from neighboring cells, the proposed structure exhibits dramatically improved reliability due to effective suppression of thermal effects and oxygen vacancies diffusion interference, indicating that this novel structure is very promising for future high density 3D RRAM application.
View Article and Find Full Text PDF