Publications by authors named "Zhize Wu"

Graph Convolutional Networks (GCNs) are widely used for skeleton-based action recognition and achieved remarkable performance. Due to the locality of graph convolution, GCNs can only utilize short-range node dependencies but fail to model long-range node relationships. In addition, existing graph convolution based methods normally use a uniform skeleton topology for all frames, which limits the ability of feature learning.

View Article and Find Full Text PDF

The accurate and efficient detection of defective insulators is an essential prerequisite for ensuring the safety of the power grid in the new generation of intelligent electrical system inspections. Currently, traditional object detection algorithms for detecting defective insulators in images face issues such as excessive parameter size, low accuracy, and slow detection speed. To address the aforementioned issues, this article proposes an insulator defect detection model based on the lightweight Faster R-CNN (Faster Region-based Convolutional Network) model (Faster R-CNN-tiny).

View Article and Find Full Text PDF

Scene text recognition is a crucial area of research in computer vision. However, current mainstream scene text recognition models suffer from incomplete feature extraction due to the small downsampling scale used to extract features and obtain more features. This limitation hampers their ability to extract complete features of each character in the image, resulting in lower accuracy in the text recognition process.

View Article and Find Full Text PDF

Meter reading is an important part of intelligent inspection, and the current meter reading method based on target detection has problems of low accuracy and large error. In order to improve the accuracy of automatic meter reading, this paper proposes an automatic reading method for pointer-type meters based on the YOLOv5-Meter Reading (YOLOv5-MR) model. Firstly, in order to improve the detection performance of small targets in YOLOv5 framework, a multi-scale target detection layer is added to the YOLOv5 framework, and a set of Anchors is designed based on the lightning rod dial data set; secondly, the loss function and up-sampling method are improved to enhance the model training convergence speed and obtain the optimal up-sampling parameters; Finally, a new external circle fitting method of the dial is proposed, and the dial reading is calculated by the center angle algorithm.

View Article and Find Full Text PDF

DNA-binding proteins (DBPs) play pivotal roles in many biological functions such as alternative splicing, RNA editing, and methylation. Many traditional machine learning (ML) methods and deep learning (DL) methods have been proposed to predict DBPs. However, these methods either rely on manual feature extraction or fail to capture long-term dependencies in the DNA sequence.

View Article and Find Full Text PDF