Multiplexed error-robust fluorescence in situ hybridization (MERFISH) allows genome-scale imaging of RNAs in individual cells in intact tissues. To date, MERFISH has been applied to image thin-tissue samples of ~10 µm thickness. Here, we present a thick-tissue three-dimensional (3D) MERFISH imaging method, which uses confocal microscopy for optical sectioning, deep learning for increasing imaging speed and quality, as well as sample preparation and imaging protocol optimized for thick samples.
View Article and Find Full Text PDFIn mammalian brains, millions to billions of cells form complex interaction networks to enable a wide range of functions. The enormous diversity and intricate organization of cells have impeded our understanding of the molecular and cellular basis of brain function. Recent advances in spatially resolved single-cell transcriptomics have enabled systematic mapping of the spatial organization of molecularly defined cell types in complex tissues, including several brain regions (for example, refs.
View Article and Find Full Text PDFIn mammalian brains, tens of millions to billions of cells form complex interaction networks to enable a wide range of functions. The enormous diversity and intricate organization of cells in the brain have so far hindered our understanding of the molecular and cellular basis of its functions. Recent advances in spatially resolved single-cell transcriptomics have allowed systematic mapping of the spatial organization of molecularly defined cell types in complex tissues.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2021
In current work, GO@SiO nanocomposite was prepared by coating nanoscale silica onto graphene oxide (GO). GO@SiO was characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (IF-IR). Additionally, the demulsifying performance of GO@SiO was investigated by bottle test.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are involved in the progression of different types of cancers giving new hope for cancer treatment. The role and regulatory mechanism of microRNA‑187 (miR‑187) are largely unknown. In the present study, 74 patients with non‑small cell lung cancer (NSCLC) were selected.
View Article and Find Full Text PDF