Wool growth and fineness regulation is influenced by some factors such as genetics and environment. At the same time, lncRNA participates in numerous biological processes in animal production. In this research, we conducted a thorough analysis and characterization of the microstructure of wool, along with long non-coding RNAs (lncRNAs), their target genes, associated pathways, and Gene Ontology terms pertinent to the wool fineness development.
View Article and Find Full Text PDFTransforming growth factor beta-1 (TGF-β1) regulates the proliferation of ovarian granulosa cells and participates in follicular development in small-tail Han sheep via the SMAD pathway. However, which additional biological processes and regulatory mechanisms are involved in TGF-β1-mediated regulation of granulosa cell changes remains unknown. In this study, TGF-β1-treated (10 ng/mL) ovarian granulosa cells of small-tail Han sheep were used as the model, RNA-Seq was employed to screen differentially expressed genes (DEGs), and rescue experiments were used to verify selected key pathways.
View Article and Find Full Text PDFAs a class of regulatory factors, microRNAs (miRNAs) play an important role in regulating normal muscle development and fat deposition. Muscle and adipose tissues, as major components of the animal organism, are also economically important traits in livestock production. However, the effect of miRNA expression profiles on the development of muscle and adipose tissues in yak is currently unknown.
View Article and Find Full Text PDFThe development of wool has a complex regulatory mechanism both influenced by genetic and environmental factors. MicroRNAs (miRNA) were involved in various biological processes of animals, and may play an important role in the regulation of wool development. In this study, we comprehensively analyzed and identified the histological parameters of hair follicles, as well as the miRNAs, target genes, pathways, and Gene Ontology terms related to wool fineness regulation and wool growth and development using HE staining and RNA-Seqs methods.
View Article and Find Full Text PDFIn our previous study, circ_015343 was found to inhibit the viability and proliferation of ovine mammary epithelial cells (OMECs) and the expression levels of milk fat synthesis marker genes, but the regulatory mechanism underlying the processes is still unclear. Accordingly in this study, the target relationships between circ_015343 with miR-25 and between miR-25 with insulin induced gene 1 (INSIG1) were verified, and the functions of miR-25 and INSIG1 were investigated in OMECs. The dual-luciferase reporter assay revealed that miR-25 mimic remarkably decreased the luciferase activity of circ_015343 in HEK293T cells cotransfected with a wild-type vector, while it did not change the activity of circ_015343 in HEK293T cells cotransfected with a mutant vector.
View Article and Find Full Text PDFChanges in keratin gene expression and spatiotemporal regulation determine the compositional content and cellular localization of wool keratin, thereby affecting wool traits. Therefore, keratin gene family member 32 () was selected for a study using RT-qPCR, immunofluorescence, and penta-primer amplification refractory mutation system (PARMS) techniques. The results showed that mRNA was highly expressed in the skin and localized to the inner root sheath (IRS), outer root sheath (ORS) and dermal papilla (DP).
View Article and Find Full Text PDFIn addition to its association with milk protein synthesis via the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway, also affects milk fat synthesis. However, to date, there have been no reports on the effect of on ovine mammary epithelial cells (OMECs), which directly determine milk yield and milk contents. In this study, the coding sequence (CDS) region of ovine was cloned and identified and its tissue expression and localization in ovine mammary glands, as well as its effects on the viability, proliferation, and milk fat and casein levels of OMECs, were also investigated.
View Article and Find Full Text PDFStudies of preadipocyte differentiation and fat deposition in sheep have mainly focused on functional genes, and with no emphasis placed on the role that long non-coding RNAs (lncRNAs) may have on the activity of those genes. Here, the expression profile of lncRNAs in ovine preadipocyte differentiation was investigated and the differentially expressed lncRNAs were screened on day 0 (D0), day 2(D2) and day 8(D8) of ovine preadipocyte differentiation, with their target genes being predicted. The competing endogenous RNA (ceRNA) regulatory network was constructed by GO and KEGG enrichment analysis for functional annotation, and some differentially expressed lncRNAs were randomly selected to verify the RNA-Seq results by RT-qPCR.
View Article and Find Full Text PDFKeratin (K) is a major protein component of hair and is involved in hair growth and development. In this study, we analysed the expression, localization, and polymorphism of the K84 gene () in Gansu Alpine Fine-wool sheep using immunofluorescence, RT-qPCR, and PARMS (penta-primer amplification refractory mutation system). Haplotypes of were also constructed and their relationship with wool traits analysed.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a class of non-coding RNAs that play important roles in preadipocyte differentiation and adipogenesis. However, little is known about genome-wide identification, expression profile, and function of circRNAs in sheep. To investigate the role of circRNAs during ovine adipogenic differentiation, the subcutaneous adipose tissue of Tibetan rams was collected in June 2022.
View Article and Find Full Text PDFTransforming growth factor (TGF)-β1 is an important multifunctional cytokine in the TGF-β signaling pathway, which is involved in the molecular regulation of multiple activities, including follicle development and ovulation in female reproductive physiology. However, the biological function of TGF-β1 in follicular development and in regulating the proliferation or apoptosis of granulosa cells in small tail Han sheep remain unclear. In this study, we analyzed the expression levels of TGF-β1 in the ovary at the follicular stage in small tail Han sheep.
View Article and Find Full Text PDFPlateau adaptation in animals involves genetic mechanisms as well as coevolutionary mechanisms of the microbiota and metabolome of the animal. Therefore, the characteristics of the rumen microbiome and metabolome, transcriptome, and serum metabolome of Tibetan sheep at different altitudes (4500 m, 3500 m, and 2500 m) were analyzed. The results showed that the rumen differential metabolites at 3500 m and 4500 m were mainly enriched in amino acid metabolism, lipid metabolism, and carbohydrate metabolism, and there was a significant correlation with microbiota.
View Article and Find Full Text PDFThe preadipocytes differentiation is a vital process of lipogenesis; exploring the molecular mechanisms of lipogenesis contributes to improve the meat quality and final commercial income. Lipogenesis has been widely reported in other livestock, but little is known about the gene expression profiles at different stages during preadipocytes differentiation in sheep. In this study, ovine preadipocytes were cultured in vitro and then induced to begin differentiation.
View Article and Find Full Text PDFmicroRNAs (miRNAs) are involved in the regulation of biological phenomena by down-regulating the expression of mRNAs. In this study, Liaoning cashmere (LC) goats ( = 6) and Ziwuling black (ZB) goats ( = 6) with different cashmere fiber production performances were selected. We supposed that miRNAs are responsible for the cashmere fiber trait differences.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) are a kind of non-coding RNA being >200 nucleotides in length, and they are found to participate in hair follicle growth and development and wool fiber traits regulation. However, there are limited studies reporting the role of lncRNAs in cashmere fiber production in cashmere goats. In this study, Liaoning cashmere (LC) goats ( = 6) and Ziwuling black (ZB) goats ( = 6) with remarkable divergences in cashmere yield, cashmere fiber diameter, and cashmere color were selected for the construction of expression profiles of lncRNAs in skin tissue using RNA sequencing (RNA-seq).
View Article and Find Full Text PDFCircular RNA (circRNA) is a type of non-coding RNA generated from back-splicing the reactions of linear RNA. It plays an important role in various cellular and biological processes. However, there are few studies about the regulatory effect of circRNAs on cashmere fiber traits in cashmere goats.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) play important roles in the growth and development of skeletal muscle. However, there is limited information on goats. In this study, expression profiles of lncRNAs in Longissimus dorsi muscle from Liaoning cashmere (LC) goats and Ziwuling black (ZB) goats with divergent meat yield and meat quality were compared using RNA-sequencing.
View Article and Find Full Text PDFThe rumen is an important hallmark organ of ruminants and plays an important role in the metabolism and immune barrier of Tibetan sheep on the Plateau. However, there are few studies on rumen development and metabolism regulation in Tibetan sheep at different ages. Here, we comprehensively analyzed the immune function, fermentation function, rumen epithelial micromorphology and transcriptome profile of Tibetan sheep at different ages.
View Article and Find Full Text PDFMilk fat is the foremost nutrient of milk and a vital indicator in evaluating milk quality. Accumulating evidence suggests that microRNAs (miRNAs) are involved in the synthesis of milk fat. The miR-200c is closely related to lipid metabolism, but little is known about its effect on the synthesis of milk fat in MECs of ewes.
View Article and Find Full Text PDFIn our previous study, microRNA (miR)-381 was found to be the most down-regulated miRNA in skeletal muscle of Liaoning cashmere goats with higher skeletal muscle mass, but the molecular mechanism involved remains unclear. In this study, primary caprine skeletal muscle satellite cells (SMSCs) were isolated and identified. We investigated the effect of miR-381 on the viability, proliferation and differentiation of caprine SMSCs, and the target relationships of miR-381 with jagged canonical Notch ligand 2 () and phosphatase and tensin homolog ().
View Article and Find Full Text PDFIn our previous a study, circ_003628 was one of the most highly expressed circular RNAs (circRNAs) in the muscle of goats found by RNA-seq, suggesting that the circRNA may be important for caprine muscle growth and development. However, there have been no reports describing the molecular mechanisms by which circ_003628 regulates the activities of goat skeletal muscle satellite cells (SMSCs). In this study, reverse transcriptase-PCR (RT-PCR) and DNA sequencing were used to validate the authenticity of circ_003628, and its characteristics, expression profile and effect on goat SMSCs were also studied using real-time quantitative-PCR (RT-qPCR), EdU, CCK-8 and immunofluorescence assays.
View Article and Find Full Text PDFIn our previous study, microRNA (miR)-199a-3p was found to be the most upregulated miRNA in mammary gland tissue during the non-lactation period compared with the peak-lactation period. However, there have been no reports describing the function of miR-199a-3p in ovine mammary epithelial cells (OMECs) and the biological mechanisms by which the miRNA affects cell proliferation and milk fat synthesis in sheep. In this study, the effect of miR-199a-3p on viability, proliferation, and milk fat synthesis of OMECs was investigated, and the target relationship of the miRNA with very low-density lipoprotein receptor () was also verified.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are a kind of non-coding RNA that have an important molecular function in mammary gland development and lactation of mammals. In our previous study, circ_015343 was found to be highly expressed in the ovine mammary gland tissue at the peak-lactation period by using RNA sequencing (RNA-seq). In the present study, the authenticity of circ_015343 was confirmed by using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis and Sanger sequencing.
View Article and Find Full Text PDF