Mid-infrared (MIR) fiber lasers are important for a wide range of applications in sensing, spectroscopy, imaging, defense, and security. Some progress has been made in the research of MIR fiber lasers based on soft glass fibers, however, the emission range of rare-earth ions and the robustness of the host materials are still a major challenge for MIR fiber lasers. The large number of gases provide a variety of optical transitions in the MIR band.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2024
Hollow-core photonic crystal fibers (HC-PCFs) provide an ideal transmission medium and experimental platform for laser-matter interaction. Here, we report a cascaded all-fiber gas Raman laser based on deuterium (D)-filled HC-PCFs. D is sealed into a gas cavity formed by a 49 m-long HC-PCF and solid-core fibers, and two homemade fiber Bragg gratings (FBGs) with the Raman and pump wavelength, respectively, are further introduced.
View Article and Find Full Text PDFWe report here, to the best of our knowledge, the first 1.5 µm methane-filled fiber Raman laser pumped by a fiber laser. Based on the narrow-linewidth pulsed Yb-doped fiber laser pump source and a 15 m hollow-core fiber filled with 2.
View Article and Find Full Text PDFWe present here the first watt-level single-frequency thulium-doped ZBLAN fiber amplifier system operating at a wavelength of 2.3 µm. Continuous-wave output of up to 1.
View Article and Find Full Text PDFWe present the characteristics of a continuous-wave (CW) mid-infrared fiber laser source based on HBr-filled hollow-core fibers (HCFs) made of silica. The laser source delivers a maximum output power of 3.1 W at 4.
View Article and Find Full Text PDFGas-filled hollow-core fiber (HCF) lasers have emerged as a promising technology for generating mid-infrared lasers. A four-energy level system laser model is presented to predict the performance of optically pumped HBr-filled HCF lasers under continuous wave (CW) and pulsed excitations. The steady state condition is considered in CW pumping and the characteristics of simulated population density and power distribution along HCF are investigated.
View Article and Find Full Text PDFWe report here, to the best of our knowledge, the first high-gain, single-frequency Tm-doped fiber amplifier operating at the 2.3-μm band with conventional ground-state pumping transition (H→H) at 793 nm. The gain fiber is an 8.
View Article and Find Full Text PDFThe most prevalent subtype of renal cell carcinoma (RCC), kidney renal clear cell carcinoma (KIRC) may be associated with a poor prognosis in a high number of cases, with a stage-specific prognostic stratification currently in use. No reliable biomarkers have been utilized so far in clinical practice despite the efforts in biomarker research in the last years. Nonsense-mediated mRNA decay (NMD) is a critical safeguard against erroneous transcripts, particularly mRNA transcripts containing premature termination codons (called nonsense-mediated decay targeted RNA, ntRNA).
View Article and Find Full Text PDFWe report here the first, to the best of our knowledge, demonstration of a mid-infrared (mid-IR) fiber gas amplifier based on acetylene-filled hollow-core fibers. A quasi-all-fiber structure fiber acetylene laser in a single-pass configuration is used as a seed. The injection of the seed removes the threshold and increases the laser efficiency, which are more pronounced at high pressure.
View Article and Find Full Text PDFWe report here the characteristics of a nanosecond high-power mid-infrared (mid-IR) light source based on an anti-resonant hollow-core fiber (AR-HCF) filled with acetylene gas. It is a single-pass configuration with 9.3-m HCFs, pumped by a modulated and amplified diode laser.
View Article and Find Full Text PDFFibre lasers operating at the mid-IR have attracted enormous interest due to the plethora of applications in defence, security, medicine, and so on. However, no continuous-wave (CW) fibre lasers beyond 4 μm based on rare-earth-doped fibres have been demonstrated thus far. Here, we report efficient mid-IR laser emission from HBr-filled silica hollow-core fibres (HCFs) for the first time.
View Article and Find Full Text PDFHere, we report the first, to the best of our knowledge, all-fiber gas Raman laser oscillator (AFGRLO), which is formed by fusion splicing solid-core fibers and a hydrogen-filled hollow-core photonic crystal fiber, and further introducing fiber Bragg gratings at a Stokes wavelength. Pumping with a homemade 1.54 µm fiber amplifier seeded by a narrow linewidth diode laser, we obtain the maximum output Stokes power of 1.
View Article and Find Full Text PDFIn recent years, mid-infrared fiber lasers based on gas-filled photonic crystal hollow-core fibers (HCFs) have attracted enormous attention. They provide a potential method for the generation of high-power mid-infrared emissions, particularly beyond 4 μm. However, there are high requirements of the pump for wavelength stability, tunability, laser linewidth, etc.
View Article and Find Full Text PDFPhytoplankton is capable of responding to aquatic conditions and can therefore be used to monitor freshwater reservoir water quality. Numerous classification techniques, including morpho-functional approaches, have been developed. This study examined changes in phytoplankton assemblages and water quality, which were sampled quarterly from July 2018 to April 2019.
View Article and Find Full Text PDFWe conducted comprehensive theoretical research on rotational stimulated Raman scattering (SRS) of hydrogen molecules in hollow-core fibers. A reliable model for describing the steady-state rotational SRS of hydrogen was established and the influences of various factors was investigated. To verify the theoretical model, a single-pass fiber gas Raman laser (FGRL) based on hydrogen-filled hollow-core photonic crystal fibers pumped by a 1.
View Article and Find Full Text PDFWe demonstrate here for the first time, to the best of our knowledge, an effective method to achieve low-loss light coupling from solid-core fibers to anti-resonant hollow-core fibers (AR-HCFs) by fiber tapering technique. We establish the coupling models by beam propagation method (BPM), and the simulation results show that the coupling efficiency can be optimized by choosing a proper waist diameter of the tapered solid-core fiber. Two types of AR-HCFs have been tested experimentally, and the maximum light coupling efficiency is ∼91.
View Article and Find Full Text PDFWe report here, to the best of our knowledge, for the first time high-efficiency laser wavelength conversion from 1.5 µm band to 1.7 µm band in deuterium-filled hollow-core photonic crystal fibers by rotational stimulated Raman scattering (SRS).
View Article and Find Full Text PDFHigh-power tunable pulsed and CW mid-infrared fiber gas laser sources in acetylene-filled hollow-core fibers, to the best of our knowledge, are demonstrated for the first time. By precisely tuning the wavelength of the pump source, an amplified tunable 1.5 μm diode laser, to match different absorption lines of acetylene, the laser output is step-tunable in the range of 3.
View Article and Find Full Text PDFA watt-level tunable 1.5 μm narrow linewidth fiber ring laser using a temperature tuning π-phase-shifted fiber Bragg grating (π-PSFBG) is demonstrated here, to the best of our knowledge, for the first time. The π-PSFBG is employed as both a narrow band filter and a wavelength tuning component, and its central wavelength is thermally tuned by a thermo-electric cooler.
View Article and Find Full Text PDF