N-regulated three-dimensional (3D) turf-like carbon material loaded with FeCoNi nanoalloys (F-CNS-CNT), composed of carbon nanotubes (CNT) grown in situ on carbon nanosheets(CNS), was synthesized using a low-temperature solution combustion method and organic compounds rich in pyridinic-N. This distinct structure significantly expands the effective electrochemical surface area, revealing an abundance of active sites and enhancing the mass transfer capability for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Both experimental observations and theoretical calculations corroborate that the synergy between the FeCoNi nanoalloy and the highly pyridinic N-doped carbon substrate optimizes the adsorption and desorption-free energy of oxygen intermediates, resulting in a remarkable improvement of intrinsic ORR/OER activity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2023
CHNHPbI is capable of exhibiting a superior photoresponse to visible light, but its self-powered devices are typically formed through - junctions. In this study, we fabricated a Ag/CHNHPbI/C dual-terminal asymmetric electrode device using a single CHNHPbI perovskite micro/nanowire, enabling both the photoresponse and self-powered characteristics of CHNHPbI to visible light. Compared with traditional - junction devices, this simple device demonstrates enhanced interface photovoltaic effects by optimizing the combination of the Ag electrode with CHNHPbI, resulting in superior self-powered characteristics.
View Article and Find Full Text PDFNanostructured hybrid organic-inorganic perovskites exhibit remarkable photodetection performance due to their abundant surface states and high responsivity to visible light. However, in traditional photodetectors with a symmetrical configuration of two-terminal electrodes, the photoresponse is independent of bias polarity. Moreover, for self-powered photodetectors, an asymmetric structure of the chemical composition, such as p-n and Schottky junctions, and two different electrodes are necessary.
View Article and Find Full Text PDFAs an important variant of calibration-free laser-induced breakdown spectroscopy (CF-LIBS), one-point calibration LIBS (OPC-LIBS) corrects the Boltzmann plot of the unknown sample by using one known sample and obtains higher quantitative accuracy than CF-LIBS. However, the self-absorption effect restricts its accuracy. In this work, a new self-absorption correction (SAC) method for OPC-LIBS is proposed to solve this problem.
View Article and Find Full Text PDFThe application of composite materials that combine the advantages of carbonaceous material and metal alloy proves to be a valid method for improving the performance of lithium-sulfur batteries (LSBs). Herein iron-cobalt-nickel (FeCoNi) ternary alloy nanoparticles (FNC) that spread on nitrogen-doped carbon (NC) are obtained by a strategy of low-temperature sol-gel followed by annealing at 800 °C under an argon/hydrogen atmosphere. Benefiting from the synergistic effect of different components of FNC and the conductive network provided by the NC, not only can the "shuttle effect" of lithium polysulfides (LiPS) be suppressed, but also the conversion of LiPS, the diffusion of Li, and the deposition of LiS can be accelerated.
View Article and Find Full Text PDFAlthough CHNHPbI can present an excellent photoresponse to visible light, its application in solar cells and photodetectors is seriously hindered due to hysteresis behaviour. Moreover, for its origin, there exist different opinions. Herein, we demonstrate a route to realize precise control for the electrical transport of a single CHNHPbI micro/nanowire by constructing a two-terminal device with asymmetric Ag and C electrodes, and its hysteresis can be clearly identified as a synergistic effect of the redox reaction at the interface of the Ag electrode and the injection and ejection of holes in the interfacial traps of the C electrode rather than its bulk effect.
View Article and Find Full Text PDFLithium sulfur (Li-S) batteries are regarded as one of the most promising future energy storage candidates on account of high theoretical specific capacity of 1675 mAh g and energy density of 2600 Wh kg. However, their practical application is seriously hindered due to the poor conductivity and volume expansion of sulfur, the weak redox kinetics of lithium polysulfide (LPS), and the severe shuttle effect of LPS. Herein, VO@N,Ni-C nanostructures, multiply integrated with zero-dimensional (0D) VO nanoparticles, 1D carbon nanotubes, 2D carbon coating layers and graphene, 3D hollow spheres, and doped N and Ni heteroatoms, were synthesized via a solvothermal method followed by chemical vapor deposition.
View Article and Find Full Text PDFHere, CdS@C nanohybrid composites, where CdS quantum dots (QDs) are uniformly embedded in carbon micro-/nanobelt matrixes, are synthesized via a combustion synthesis followed by a postvulcanization. In the nanohybrids, trap centers are effectively created by the introduction of QDs and moreover their barrier height and filling level can be effectively modulated through a coupling of externally loaded strain and bias. Thus, a single CdS@C micro-/nanobelt-based two-terminal device can exhibit an ultrahigh real-time response to compressive and tensile strains with a tremendous gauge factor of above 10, high sensitivity, and fast response and recovery.
View Article and Find Full Text PDFType-II band alignment of heterostructure contributes to spatially separate electrons and holes leading to an increase in minority carrier lifetime, which has much more advantages in photocatalytic activities and photovoltaic device applications. Here, Zn2SnO4-sheathed ZnO radial heterostructure nanowires were constructed to investigate systematically interfacial charge separation. The lattice mismatch between ZnO and Zn2SnO4 induces interface states to exist at their heterointerface.
View Article and Find Full Text PDFZnO nanowires have relatively high sensitivity as ultraviolet (UV) photodetectors, while the bandgap of 3.37 eV is an important limitation for their applications in solar-blind UV (SBUV), visible (VIS) and near infrared (NIR) range. Besides UV response, in this study, we demonstrate the promising applications of individual undoped ZnO NWs as high performance SBUV-VIS-NIR broad-spectral-response photodetectors, strongly depended on applied bias voltage and illumination intensity.
View Article and Find Full Text PDFResistive switching (RS) devices are widely believed as a promising candidate for next generation nonvolatile resistance random access memory. Here, Zn2SnO4-sheathed ZnO core/shell heterostructure nanowires were constructed through a polymeric sol-gel approach followed by post-annealing. The back-to-back bipolar RS properties were observed in the Ohmic contact two-terminal devices based on individual core/shell nanowires.
View Article and Find Full Text PDF