Epitaxy of rare-earth nitride films are crucial for studying their physical properties and offer significant potential for applications in spintronics and optoelectronics. However, synthesizing single-crystalline LuN presents significant challenges, leading to a limited understanding of its properties. In this study, we successfully achieved the epitaxial growth of (001)-oriented LuN films on YAlO (110) substrates by reactive magnetron sputtering epitaxy.
View Article and Find Full Text PDFThe spectral form factor (SFF) plays a crucial role in revealing the statistical properties of energy-level distributions in complex systems. It is one of the tools to diagnose quantum chaos and unravel the universal dynamics therein. The definition of SFF in most literature only encapsulates the two-level correlation.
View Article and Find Full Text PDFVarious vacuum ultraviolet (VUV) lamps are simple and convenient VUV light sources for mass spectrometry and other research fields. However, the strong absorption of high-energy photons by window materials limits the application of an extreme ultraviolet (EUV) light. In this study, a novel high-flux EUV light source is developed using a microchannel plate (MCP) window to transmit 73.
View Article and Find Full Text PDFObjectives: Over the years, it has been found that colchicine offers substantial benefits in secondary prevention in patients with coronary artery disease (CAD). We studied the effects of colchicine timing because there are no guidelines about when to provide it during the perioperative period for patients with CAD.
Methods: Up to January 1, 2023, seven electronic literature databases were screened (including three English databases and four Chinese databases).
The secondary organic aerosol (SOA) yield of toluene photooxidation was reported to substantially higher than that of trimethylbenzene due to the effect of the number of methyl substituents. However, the intrinsic mechanism for this disparity is not clear enough. In this study, a highly-sensitive thermal-desorption photoinduced associative ionization mass spectrometer (TD-PAI-MS) was used to real-time characterize the molecular composition and its evolution of the SOA generated from the photooxidation of toluene and 1,2,3-trimethylbenzene (1,2,3-TMB) in a smog chamber.
View Article and Find Full Text PDFVolatile organic compounds (VOCs) released along with soil disturbance during the remediation of abandoned industrial sites have attracted great attention due to their possible toxicity and odour. However, the real-time emission characteristics of these VOCs and their subsequent effects on health and olfaction are less understood. In this study, the gaseous VOCs released from soil disturbance by excavators and drilling rigs at an abandoned chemical pesticide plant were monitored online with a laboratory-built single photoionization time-of-flight mass spectrometer (SPI-TOFMS).
View Article and Find Full Text PDFSingle-photon ionization (SPI) is a unique soft ionization technique for organic analysis. A convenient high-flux vacuum ultraviolet (VUV) light source is a key precondition for wide application of SPI techniques. In this study, we present a novel VUV lamp by simply modifying an ordinary electrodeless fluorescent lamp.
View Article and Find Full Text PDFPhotoionization mass spectrometry (PI-MS) has become a versatile tool in the real-time analysis of volatile organic compounds (VOCs) from the atmosphere or exhaled breath. However, some key species, , acetonitrile, are hard to measure due to their higher ionization energies than photon energy. In this study, the direct and sensitive detection of gaseous acetonitrile based on a photoinduced associative ionization (PAI) reaction was investigated with a laboratory-built PAI time-of-flight mass spectrometer (PAI-TOFMS).
View Article and Find Full Text PDFSingle-photon ionization mass spectrometry (SPI-MS) is an attractive analytical technique for the online detection of volatile organic compounds; however, the low photon flux of the vacuum ultraviolet (VUV) lamp commonly used in the SPI ion source and the corresponding low detection sensitivity remain a constraint to its wide field applications. In this study, a new VUV lamp-based SPI ion source was developed. By increasing the discharging volume and optimizing the configuration of the lens and ionizer, the photon flux of the VUV lamp and the sensitivity of the ion source were significantly improved.
View Article and Find Full Text PDFIntroduction: Situational triggers for urinary urgency and incontinence (UUI) such as "latchkey incontinence" and running water are often reported clinically, but no current clinical tools exist to directly address symptoms of UUI provoked by environmental stimuli. Previously we have shown that urgency and leakage can be reproduced during urodynamic studies with exposure to personal urgency-related images. Here we investigate the neural signatures associated with such situational triggers to inform potential therapies for reducing reactivity to these personal urgency-related cues among women with situational UUI.
View Article and Find Full Text PDFChitosan (CS) is an attractive bio-adsorbent in pollutant removal due to its environment-friendly properties and abundant adsorption sites. However, the weak mechanical properties and strong dissolubility in acidic conditions of CS hinder its wide application. Herein, a facile method was proposed to fabricate polydopamine (PDA) and CS cross-linked graphene oxide (GO) (GO/CS/PDA) composite aerogel for Cr (VI) removal.
View Article and Find Full Text PDFTwo-dimensional materials based on ternary system of B, C and N are useful ranging from electric devices to catalysis. The bonding arrangement within these BCN nanosheets largely determines their electronic structure and thus chemical and (or) physical properties, yet it remains a challenge to manipulate their bond structures in a convenient and controlled manner. Recently, we developed a synthetic protocol for the synthesis of crumpled BCN nanosheets with tunable B and N bond structure using urea, boric acid and polyethylene glycol (PEG) as precursors.
View Article and Find Full Text PDFThe large-scale synthesis of nitrogen doped graphene (N-graphene) with high oxygen reduction reaction (ORR) performance has received a lot of attention recently. In this work, we have developed a facile and economical procedure for mass production of edge-nitrogen-rich graphene nanoplatelets (ENR-GNPs) by a combined process of ball milling of graphite powder (GP) in the presence of melamine and subsequent heat treatment. It is found that the ball milling process can not only crack and exfoliate pristine GP into edge-expanded nanoplatelets but also mechanically activate GP to generate appropriate locations for N-doping.
View Article and Find Full Text PDFNitrogen-doped graphene sheets (NGS), synthesized by annealing graphite oxide (GO) with urea at 700-1050 °C, were studied as positive electrodes in a vanadium redox flow battery. The NGS, in particular annealed at 900 °C, exhibited excellent catalytic performance in terms of electron transfer (ET) resistance (4.74 ± 0.
View Article and Find Full Text PDF