In industrial measurement, temperature field measurement typically relies on thermocouples and spectroscopic techniques. These traditional methods often suffer from insufficient precision, resulting in prevalent low-resolution measurements in real thermal scenarios. To address this challenge, we propose a novel general super-resolution approach for temperature field measurement in various thermal scenarios, leveraging the low-resolution (LR) data obtained from sensor array technology.
View Article and Find Full Text PDFPressure sensors prepared from sapphire exhibit excellent characteristics, including high-temperature resistance, high hardness, and resistance to electromagnetic interference. A Fast Fourier Transform and Mean Square Error (FFT-MSE) demodulation algorithm was employed to demodulate a sapphire sandwich-structure Fabry-Perot (F-P) pressure sensor. Through simulation analysis, the experimental results indicated that the demodulation error of the air cavity length in the range of 206 μm to 216 μm was less than 0.
View Article and Find Full Text PDFAccurately acquiring crucial data on tube furnaces and real-time temperature monitoring of different temperature zones is vital for material synthesis technology in production. However, it is difficult to achieve real-time monitoring of the temperature field of tube furnaces with existing technology. Here, we proposed a method to fabricate silver (Ag) resistance temperature detectors (RTDs) based on a blade-coating process directly on the surface of a quartz ring, which enables precise positioning and real-time temperature monitoring of tube furnaces within 100-600 °C range.
View Article and Find Full Text PDFIn the field of in situ measurement of high-temperature pressure, fiber-optic Fabry-Perot pressure sensors have been extensively studied and applied in recent years thanks to their compact size and excellent anti-interference and anti-shock capabilities. However, such sensors have high technological difficulty, limited pressure measurement range, and low sensitivity. This paper proposes a fiber-optic Fabry-Perot pressure sensor based on a membrane-hole-base structure.
View Article and Find Full Text PDFMonitoring high-temperature strain on curved components in harsh environments is a challenge for a wide range of applications, including in aircraft engines, gas turbines, and hypersonic vehicles. Although there are significant improvements in the preparation of high-temperature piezoresistive film on planar surfaces using 3D printing methods, there are still difficulties with poor surface compatibility and high-temperature strain testing on curved surfaces. Herein, a conformal direct ink writing (CDIW) system coupled with an error feedback regulation strategy was used to fabricate high-precision, thick films on curved surfaces.
View Article and Find Full Text PDFCurrent methods for thin film sensors preparation include screen printing, inkjet printing, and MEMS (microelectromechanical systems) techniques. However, their limitations in achieving sub-10 μm line widths hinder high-density sensors array fabrication. Electrohydrodynamic (EHD) printing is a promising alternative due to its ability to print multiple materials and multilayer structures with patterned films less than 10 μm width.
View Article and Find Full Text PDFSmart biomaterials have been rapidly advancing ever since the concept of tissue engineering was proposed. Interacting with human cells, smart biomaterials can play a key role in novel tissue morphogenesis. Various aspects of biomaterials utilized in or being sought for the goal of encouraging bone regeneration, skin graft engineering, and nerve conduits are discussed in this review.
View Article and Find Full Text PDFBackground & Problem: The need to use an indwelling nasogastric tube, urinary catheter, or tracheostomy tube (the so-called "three tubes") because of illness or prolonged bedrest is increasing. The functions and effectiveness of these tubes may be maintained only with correct care. Improper care, slippage, obstruction, or infection may in severe cases cause septic shock or even death.
View Article and Find Full Text PDF