The healing of tendon-bone contact surfaces involves complex biomechanical and biochemical interactions, with pivotal implications for sports medicine and rehabilitation. This review explores applications from cellular mechanics to tissue engineering, emphasizing how biomechanics impact tendon-bone healing. Cells regulate behavior, including growth, differentiation, and migration, by sensing mechanical signals and translating them into biochemical responses, which are critical in the healing process.
View Article and Find Full Text PDFMicroplastics have become major pollutants in the marine environment and can accumulate in high concentrations, especially in the gut of marine organisms. Unlike other seafood, bivalves are consumed whole, along with their digestive systems, resulting in the transfer of microplastics to humans. Therefore, there is an urgent need to review the status of microplastic pollution in marine bivalves.
View Article and Find Full Text PDFMycorrhizae are ubiquitous symbioses established between fungi and plant roots. Orchids, in particular, require compatible mycorrhizal fungi for seed germination and protocorm development. Unlike arbuscular mycorrhizal fungi, which have wide host ranges, orchid mycorrhizal fungi are often highly specific to their host orchids.
View Article and Find Full Text PDFThe study of litter can provide an important reference for understanding patterns of forest nutrient cycling and sustainable management. Here, we measured litterfall (leaves, branches, etc.) from a wet, evergreen, broad-leaved forest in Ailao Mountains of southwestern China on a monthly basis for 11 years (2005-2015).
View Article and Find Full Text PDFIt is a challenging task to directly apply emulsified silicone oil to the surface of cotton fabric to obtain superhydrophobic properties. In this work, a temperature-responsive microgel was first synthesized and the particle size and distribution of the microgel, thermo-responsiveness, and hydrophobicity of the microgel membrane were investigated. Then, through an emulsifying PMHS/water system with microgels as a Pickering emulsifier, a series of Pickering emulsions were obtained.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
August 2022
Motor-modality-based brain computer interface (BCI) could promote the neural rehabilitation for stroke patients. Temporal-spatial analysis was commonly used for pattern recognition in this task. This paper introduced a novel connectivity network analysis for EEG-based feature selection.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) with boron-nitrogen (BN) moieties have attracted tremendous interest due to their intriguing electronic and optoelectronic properties. However, most of the BN-fused π-systems reported to date are difficult to modify and exhibit traditional aggregation-caused quenching (ACQ) characteristics. This phenomenon greatly limits their scope of application.
View Article and Find Full Text PDFHybrid-modality brain-computer Interfaces (BCIs), which combine motor imagery (MI) bio-signals and steady-state visual evoked potentials (SSVEPs), has attracted wide attention in the research field of neural engineering. The number of channels should be as small as possible for real-life applications. However, most of recent works about channel selection only focus on either the performance of classification task or the effectiveness of device control.
View Article and Find Full Text PDFThe Brain Computer Interface (BCI) system is a typical neurophysiological application which helps paralyzed patients with human-machine communication. Stroke patients with motor disabilities are able to perform BCI tasks for clinical rehabilitation. This paper proposes an effective scheme of transfer calibration for BCI rehabilitation.
View Article and Find Full Text PDFDeep reinforcement learning (DRL) recently has attained remarkable results in various domains, including games, robotics, and recommender system. Nevertheless, an urgent problem in the practical application of DRL is fast adaptation. To this end, this article proposes a new and versatile metalearning approach called fast task adaptation via metalearning (FTAML), which leverages the strengths of the model-based methods and gradient-based metalearning methods for training the initial parameters of the model, such that the model is able to efficiently master unseen tasks with a little amount of data from the tasks.
View Article and Find Full Text PDFObjective: The recognition of genes implicated in ovarian cancer risk beyond BRCA1, BRCA2, and the Lynch syndrome genes has increased the variety of testing options available to providers and patients. We report the frequency of pathogenic variants identified among individuals with ovarian cancer undergoing clinical genetic testing via a multi-gene hereditary cancer panel.
Methods: Genetic testing of up to 32 genes using a hereditary cancer panel was performed on 4439 ovarian cancer cases, and results were analyzed for frequency of pathogenic variants.
Purpose: Germ-line testing for panels of cancer genes using next-generation sequencing is becoming more common in clinical care. We report our experience as a clinical laboratory testing both well-established, high-risk cancer genes (e.g.
View Article and Find Full Text PDFWe used circular chromatin conformation capture (4C) to identify a physical contact in human pancreatic islets between the region near the insulin (INS) promoter and the ANO1 gene, lying 68 Mb away on human chromosome 11, which encodes a Ca(2+)-dependent chloride ion channel. In response to glucose, this contact was strengthened and ANO1 expression increased, whereas inhibition of INS gene transcription by INS promoter targeting siRNA decreased ANO1 expression, revealing a regulatory effect of INS promoter on ANO1 expression. Knockdown of ANO1 expression caused decreased insulin secretion in human islets, establishing a physical proximity-dependent feedback loop involving INS transcription, ANO1 expression, and insulin secretion.
View Article and Find Full Text PDFAlthough it might appear that chromatin is randomly packed within the nucleus, recent data (Hou et al., 2012, in this issue of Molecular Cell) show that it is organized into defined and functionally important domains marked by preferred intradomain physical contacts, and with boundaries associated with insulator protein occupancy.
View Article and Find Full Text PDFBiochim Biophys Acta
July 2012
The DNA sequence elements called insulators have two basic kinds of properties. Barrier elements block the propagation of heterochromatic structures into adjacent euchromatin. Enhancer blocking elements interfere with interaction between an enhancer and promoter when placed between them.
View Article and Find Full Text PDFInsulin (INS) synthesis and secretion from pancreatic β-cells are tightly regulated; their deregulation causes diabetes. Here we map INS-associated loci in human pancreatic islets by 4C and 3C techniques and show that the INS gene physically interacts with the SYT8 gene, located over 300 kb away. This interaction is elevated by glucose and accompanied by increases in SYT8 expression.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2009
The TAL1 (or SCL) gene, originally discovered through its involvement by a chromosomal translocation in T-cell acute lymphoblastic leukemia, encodes a basic helix-loop-helix (bHLH) transcription factor essential for hematopoietic and vascular development. To identify its interaction partners, we expressed a tandem epitope-tagged protein in murine erythroleukemia (MEL) cells and characterized affinity-purified Tal1-containing complexes by liquid chromatography-tandem mass spectrometry analysis. In addition to known interacting proteins, two proteins related to the Eight-Twenty-One (ETO) corepressor, Eto2/Mtg16 and Mtgr1, were identified from the peptide fragments analyzed.
View Article and Find Full Text PDFA family of single-stranded DNA-binding proteins (or SSBPs) has been shown to augment the function of LIM-homeodomain (LIM-HD) transcription factors in embryogenesis by interaction with LIM domain-binding protein-1 (LDB1). No DNA-binding complex has been described, however, containing a LIM-HD protein, LDB1, and SSBP, and the mechanism by which SSBPs affect LIM-HD function had not been elucidated. Through use of electrophoretic mobility shift, antibody supershift, and ChIP analyses, we show that an Lhx2-Ldb1-Ssbp3 complex binds a specific element in the Lhx2 target gene Cga (encoding the alpha subunit of glycoprotein hormones) in the alphaT3-1 pituitary cell line.
View Article and Find Full Text PDFThe LIM domain-binding protein Ldb1 is an essential cofactor of LIM-homeodomain (LIM-HD) and LIM-only (LMO) proteins in development. The stoichiometry of Ldb1, LIM-HD, and LMO proteins is tightly controlled in the cell and is likely a critical determinant of their biological actions. Single-stranded DNA-binding proteins (SSBPs) were recently shown to interact with Ldb1 and are also important in developmental programs.
View Article and Find Full Text PDFA straightforward all-optical way is demonstrated to synchronize broadband pulses of Ti:sapphire lasers with pulses at 1064 nm, wherein background-free pulses around 1064 nm are generated by non-collinear optical parametric amplification seeded with an intracavity continuous-wave He-Ne laser. The intracavity He-Ne laser provides sufficient seed power to dominate over parametric fluorescence. With an intracavity power of 200 mW, the idler pulse at 1064 nm has the pulse-energy about 6 nJ.
View Article and Find Full Text PDFLIM-domain-binding proteins (CLIM/NLI/Ldb) are nuclear cofactors for LIM homeodomain transcription factors (LIM-HDs) and LIM-only proteins (LMOs). The LIM-interaction domain (LID) of Ldb is located in the carboxy-terminal region and encoded by the last exon (exon 10) of Ldb genes. It is known that the mammalian CLIM1/Ldb2 gene has a splice isoform, named CLIM1b, lacking the LID.
View Article and Find Full Text PDFSWI/SNF complexes are involved in both activation and repression of transcription. While one of two homologous ATPases, Brg1 [Brm (Brahma)-related gene 1] or Brm, is required for their chromatin remodelling function, less is known about how these complexes are recruited to DNA. We recently established that a DNA-binding complex containing TAL1/SCL, E47, GATA-1, LMO2 and Ldb1 stimulates P4.
View Article and Find Full Text PDFThe TAL1 (or SCL) gene, originally identified from its involvement by a recurrent chromosomal translocation, encodes a basic helix-loop-helix transcription factor essential for erythropoiesis. Although presumed to regulate transcription, its target genes are largely unknown. We show here that a nuclear complex containing TAL1, its DNA-binding partner E47, zinc finger transcription factor GATA-1, LIM domain protein LMO2, and LIM domain-binding protein Ldb1 transactivates the protein 4.
View Article and Find Full Text PDFTo better understand the molecular events underlying the development of oesophageal cancer, we have isolated the genes dysregulated in primary oesophageal cancer tissues using a modified differential display polymerase chain reaction (DD-PCR). In the present study, a gene designated C15orf6 was identified. The C15orf6 gene, encompassing 25 kb, is composed of 11 exons with a mRNA of 1948 bp.
View Article and Find Full Text PDF