We prove analytically the ballistic thermal rectification effect (BTRE) in the Corbino disk characterized by an annular shape. We derive the thermal rectification efficiency (RE) and show that it can be expressed as the product of two independent functions, the first dependent on the temperatures of the heat baths and the second on the system's geometry. It follows that a perfect BTRE can be reached with the increase of the ratios of the heat baths' temperatures and of the radius of the outer edge to the inner edge of the disk.
View Article and Find Full Text PDFThe kicked rotor and the kicked top are two paradigms of quantum chaos. The notions of quantum resonance and the pseudoclassical limit, developed in the study of the kicked rotor, have revealed an intriguing and unconventional aspect of classical-quantum correspondence. Here, we show that, by extending these notions to the kicked top, its rich dynamical behavior can be appreciated more thoroughly; of special interest is the entanglement entropy.
View Article and Find Full Text PDF