Publications by authors named "Zhixin Ni"

Microplastic pollution in marine environments has become a global concern due to its potential ecological risks. However, long-term data on microplastic distribution are scare, hindering the assessment of the ecological threats. This study monitored microplastics pollution in the surface water of the northern South China Sea from 2019 to 2023.

View Article and Find Full Text PDF

Anthropogenic activities and natural erosion caused abundant influx of heavy metals (HMs) and organic matter (OM) into estuaries characterized by the dynamic environments governed by tidal action and river flow. Similarities and differences in the fate of HM and OM as well as the influences of OM on HMs remain incomplete in estuaries with seasonal human activity and hydrodynamic force. To address this gap, dissolved HMs (dHMs) and fluorescence dissolved OM (FDOM) were investigated in the Pearl River Estuary, a highly seasonally anthropogenic and dynamic estuary.

View Article and Find Full Text PDF

Seagrass beds are susceptible to deterioration and heavy metals represent a crucial impact factor. The accumulation of heavy metal in two tropical seagrass species were studied in South China in this study and multiple methods were used to identify the heavy metal sources. E.

View Article and Find Full Text PDF

The mixing processes of fresh-salt water in estuarine and coastal regions have a substantial impact on the characteristics of heavy metals. A study was conducted in the Pearl River Estuary (PRE), located in South China, to examine the distribution and partitioning of heavy metals and the factors that influence their presence. Results showed that the hydrodynamic force, caused by the landward intrusion of the salt wedge, was the major contributor to the aggregation of heavy metals in the northern and western PRE.

View Article and Find Full Text PDF

Heavy metals in sediments and waters in the Chukchi Plateau and adjacent waters were investigated in this study. The results showed that most metals (especially Ni, As and Co) have accumulated in sediments, and their levels followed the order of Zn > Ni > Co > Cr > Cu > As > Pb > Cd. Spatial variations of environmental variables and metal characteristics were revealed based on the transect research.

View Article and Find Full Text PDF

Nutrient and heavy metal concentrations in porewater/overlying water and their benthic fluxes were investigated to study their accumulation and transport at the sediment-water interface and the influences of sediment in the Pearl River Estuary, China. Results revealed that distribution of nutrients and metals reflected the effects of terrestrial inputs and some physicochemical processes. Benthic fluxes also suggested that nutrients and heavy metals Pb, Zn and Cd diffused from sediment to overlying water, but not for As, Co, Cr, Fe, Mn and Ni.

View Article and Find Full Text PDF

Zn, Pb, Cr, Cu, Ni, Cd concentration and ecological risk were studied in three bays to evaluate the heavy metal (HM) contamination of seagrasses. Seasonal HM accumulation varied according to locations, seagrass species and tissues. Halophila beccarii had much higher HM concentrations except for Cr in Zhelin Bay, however, bioconcentration factors (BCF) of Cu, Ni, Pb, Zn were higher in Liusha than Zhelin Bay.

View Article and Find Full Text PDF

Eighteen trace elements were analyzed in a 120-year sediment core from Daya Bay. Burial flux history and potential provenance, the relationships among trace elements, and biogenic compositions were analyzed for determining the trend and extent of trace element accumulation and identifying corresponding anthropogenic effects. Additionally, the effects of anthropogenic activities on Daya Bay were reconstructed, and a baseline/background estimation was provided for Daya Bay.

View Article and Find Full Text PDF

Heavy metal (Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb) concentrations in surface sediment porewater and their benthic fluxes were investigated in Daya Bay, South China, to study their accumulation and transfer at the sediment-water interface, as well as the impact of human activities on heavy metals. Heavy metals in porewater displayed different patterns in three partitions (top, center and inlet), which was mainly attributed to the difference in the biogeochemical conditions, hydrodynamic force inner the bay and the human activities along the bay. Ecological risk assessment results showed that heavy metals in porewater dramatically exceeded the background values.

View Article and Find Full Text PDF

In a Daya Bay 120-year dated sediment core(1892-2010), analyses were conducted of grain-size, water content, TOC, TIC, TC, loss on ignition, TN, BSi and TP, to reconstruct the anthropogenic activity history. The entire core was divided into four periods. Multi-parametric measurements, their ratios and interrelations are seen to clearly reflect the development of agriculture, aquaculture, industry and social economy surrounding Daya Bay.

View Article and Find Full Text PDF

The embryonic state of our knowledge regarding the simultaneous uptake of trace metals via multiple routes in aquatic organisms makes it difficult to accurately assess the bioaccumulation and risk of metals. This study used cadmium (Cd) and a demersal marine fish (the yellowstripe goby) as a model system to determine tissue-specific uptake of Cd under conditions of simultaneous exposure to Cd from water, sediment and diet. A triple stable isotope tracing method was used in which each exposure route was spiked by a different stable isotope (Cd, Cd and Cd).

View Article and Find Full Text PDF

In-situ study on arsenic speciation and the release kinetics in marine sediments was scarce. In this study, the distributions of labile As and their speciation in coastal sediments of Daya Bay were obtained by separate diffusive gradients in thin films (DGT) probes. Results showed that the DGT-labile As(V) was the main speciation in surface sediments (from -20 to 0 mm) with a concentration range of 0.

View Article and Find Full Text PDF

Contamination level, chemical fraction and ecological risk of heavy metals in sediments from Daya Bay (DYB) were conducted in this study. The results revealed that the concentration of Cr, Cu, Zn, As, Cd and Pb in sediments were in the range of 36.38-90.

View Article and Find Full Text PDF

This study was conducted from October 2015 to March 2017, with the aim of providing the first data on the fluxes and sources of wet and dry deposition of trace elements (TEs) in Daya Bay, South China Sea. Wet deposition flux of TEs was always preponderant and orders of magnitude higher than that of dry deposition owing to the high rainfall frequency in Daya Bay. The total deposition fluxes of TEs in the target area were higher than in most places worldwide, but at a moderate level within China.

View Article and Find Full Text PDF

As a transitional zone between riverine and marine environments, an estuary plays an important role for the sources, accumulation and transport of microplastics. Although estuarine environments are hotspots of microplastic pollution, the correlation between microplastic pollution and aquatic organisms is less known. Here we investigated microplastic pollution in wild oysters Saccostrea cucullata from 11 sampling sites along the Pearl River Estuary in South China.

View Article and Find Full Text PDF

Nutrient and heavy metal (Fe, Mn, Ni, Cu, Pb, Zn, Cr, Cd and As) concentrations in porewater in sediment cores and their diffusive benthic fluxes were investigated in Daya Bay, South China, to study the accumulation and transfer of nutrients/metals at the sediment-water interface, and to discuss the impact of human activities on nutrients/metals. Nutrients and heavy metals displayed different profiles in porewater, which was mainly attributed to the distinct biogeochemical conditions in sediments. Total mean fluxes of nutrients (except NO and NO) and metals in study area were positive, indicating nutrients and metals diffused from the sediment to overlying water, and sediment was generally the source of nutrients/metals.

View Article and Find Full Text PDF

By using flow cytometry techniques, we investigated the abundance and composition of the heterotrophic prokaryotes, virioplankton and picophytoplankton community in the Pearl River Estuary and Daya Bay in the summer of 2012. We identified two subgroups of prokaryotes, high nucleic acid (HNA) and low nucleic acid (LNA), characterized by different nucleic acid contents. HNA abundance was significantly correlated with larger phytoplankton and Synechococcus (Syn) abundance, which suggested the important role of organic substrates released from primary producers on bacterial growth.

View Article and Find Full Text PDF