Publications by authors named "Zhixin Ling"

Background: The rapid and accurate acquisition of prostate cancer pathological tissue is critical to prostate cancer research but has traditionally proven challenging. However, the gradual application of three-dimensional (3D) modeling in medical practice has overcome many of the related limitations. This cohort study aimed to compare the difference between a 3D stereotaxic sampling method and traditional cognitive sampling method to clarify the factors affecting sampling.

View Article and Find Full Text PDF

Methotrexate (MTX), a primary treatment for moderate to severe psoriasis, is limited in clinical use due to suboptimal results and severe side effects from subcutaneous (SC) injection and oral administration. Microneedles offer a promising alternative for direct MTX delivery to targeted skin lesions, but issues such as drug wastage, dosage inaccuracy, and limited drug residence time in the lesions remain. This study introduces a tip-swellable microneedle array patch (TSMAP) using photo-cross-linked methacrylated hyaluronic acid (MeHA) and biocompatible resin for effective MTX loading and sustained delivery.

View Article and Find Full Text PDF

Sustained-release drug delivery formulations are preferable for treating various diseases as they enhance and prolong efficacy, minimize adverse effects, and avoid frequent dosing. However, these formulations are associated with poor patient compliance, require trained personnel for administration, and involve harsh manufacturing conditions that compromise drug stability. Here, a self-healing biodegradable porous microneedle (PMN) patch is reported for sustained drug delivery.

View Article and Find Full Text PDF

The advancement and extensive demand for transdermal therapies can benefit from a safe, and efficient and user-friendly transdermal technology with broad applicability in delivering various hydrophilic drugs. Here the design and proof of concept applications of an ultraswelling microneedle device that enables the facile and efficient loading and transdermal delivery of hydrophilic drugs with different molecular weights is reported. The device consists of a super-hydrophilic hydrogel microneedle array and a resin base substrate.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is a prevalent cancer in adult urology, often leading to metastasis and poor prognosis. Recently, advances in tumor immunology and aging research have opened up new possibilities for the treatment of kidney cancer. Therefore, the identification of potential targets and prognostic biomarkers for immunotherapy has become increasingly urgent.

View Article and Find Full Text PDF

Combinational immunotherapy of dendritic cell (DC) vaccines and anti-programmed cell death protein 1 antibodies (aPD1) has been regarded as a promising strategy for cancer treatment because it not only induces tumor-specific T cell immune responses, but also prevents failure of T cell functions by the immune suppressive milieu of tumors. Microneedles have emerged as an innovative platform for efficient transdermal immunotherapies. However, co-delivery of DC vaccines and aPD1 via microneedles has not been studied since conventional microneedle platforms are unsuitable for fragile therapeutics like living cells and antibodies.

View Article and Find Full Text PDF

Dissolvable microneedles (DMNs) are an attractive alternative for vaccine delivery due to their user-friendly, skin-targeted, and minimally invasive features. However, vaccine waste and inaccurate dosage remain significant issues faced by DMNs, as the skin's elasticity makes it difficult to insert MNs completely. Here, a simple and reliable fabrication method are introduced based on two-casting micromolding with centrifugal drying to create a rapidly DMN patch made of hyaluronic acid.

View Article and Find Full Text PDF

Epirubicin, gemcitabine, and pirarubicin are widely used as first-line drugs for intravesical chemotherapy to prevent tumor recurrence after transurethral bladder tumor resection for non-muscle-invasive bladder cancer (NMIBC). However, which drug is better is less discussed. A total of 335 NMIBC patients administered intravesical chemotherapy underwent transurethral bladder tumor resection (TURBT) in our hospital from October 2015 to October 2019.

View Article and Find Full Text PDF

Background: Ferroptosis is a newly found non-apoptotic forms of cell death that plays an important role in tumors. However, the prognostic value of ferroptosis-related genes (FRG) in bladder cancer (BLCA) have not been well examined.

Methods: FRG data and clinical information were collected from The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

Background: Stanniocalcin-1 (STC1) is a well-studied oncogene that promotes different types of cancer progression. However, the expression status of STC1, the values of STC1 on prognosis, and its immune characteristic in bladder cancer (BLCA) have not been well examined.

Methods: The expression of STC1 and its clinicopathological as well as immune characteristics in BLCA samples were firstly identified in The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases.

View Article and Find Full Text PDF

Objective: To parallelly compare the applicability of the radius, exophytic/endophytic, nearness, anterior/posterior, location nephrometry score (R.E.N.

View Article and Find Full Text PDF

Prostate-specific membrane antigen (PSMA)-targeted 2-(3-{1-carboxy-5-[(6-[18F] fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid (18F-DCFPyL) positron emission tomography/computed tomography (PET/CT) has shown advantages in primary staging, restaging, and metastasis detection of prostate cancer (PCa). However, little is known about the role of 18F-DCFPyL PET/CT in biochemically recurrent prostate cancer (BRPCa). Hence, we performed a systematic review and meta-analysis to evaluate 18F-DCFPyL PET/CT as first-line imaging modality in early detection of BRPCa.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a common malignant tumor with increasing incidence and high heterogeneity among males worldwide. In the era of big data and artificial intelligence, the paradigm of biomarker discovery is shifting from traditional experimental and small data-based identification toward big data-driven and systems-level screening. Complex interactions between genetic factors and environmental effects provide opportunities for systems modeling of PCa genesis and evolution.

View Article and Find Full Text PDF

Accumulated evidence indicates that CCAT1 functions as an oncogene in the progression of a variety of tumors. However, little is known as to how CCAT1 impacts tumorigenesis in human prostate cancer. In this study, we found from The Cancer Genome Atlas and Memorial Sloan Kettering Cancer Center database that CCAT1 is highly upregulated in castration-resistant prostate cancer (CRPC) compared with androgen-dependent prostate cancer (ADPC).

View Article and Find Full Text PDF

We previously found that hypoxia induced renal tubular epithelial cells (RTECs) release functional extracellular vesicles (EVs), which mediate the protection of remote ischaemic preconditioning (RIPC) for kidney ischaemia-reperfusion (I/R) injury. We intend to investigate whether the EVs were regulated by hypoxia-inducible factor 1α (HIF-1α) and Rab22 during RIPC. We also attempted to determine the potentially protective cargo of the EVs and reveal their underlying mechanism.

View Article and Find Full Text PDF

Objective: To establish enzalutamide-resistant human prostate cancer cell lines and screen out the lncRNA and mRNA expression profiles associated with enzalutamide resistance.

Methods: Human prostate cancer cell lines LNCAP and C4-2B were cultured with 10 μmol/L enzalutamide for 6 months in vitro for the establishment of enzalutamide-resistant subclones LNCAP-ENZA and C4-2B-ENZA. The IC50 value and enzalutamide resistance index of each cell line were examined by MTT assay, the expressions of enzalutamide-related genes FL-AR, AR-V7 and HnRNPA1 were determined by Western blot, and the lncRNA and mRNA differential expressions of C4-2B and C4-2B-ENZA were detected by high-throughout lncRNA microarray.

View Article and Find Full Text PDF

Background: Prostate cancer (PCa) is one of the most common malignant diseases among male patients. Although androgen deprivation therapy remains the main treatment for PCa, most patients would inevitably progress to castration-resistant PCa, which is the main cause of cancer-related deaths. Thus, novel antitumor agents are urgently needed.

View Article and Find Full Text PDF

Background: Although the relationship between several single nucleotide polymorphisms (SNPs) of the oncogene and cancer risk has been assessed by some case-control studies, results of subsequent studies are controversial. Sample sizes from single-center studies are also limited, thereby providing unreliable findings. Hence, we conducted a comprehensive search and meta-analysis to evaluate the associations between SNPs and cancer risk.

View Article and Find Full Text PDF

Background: Though androgen deprivation therapy is the standard treatment for prostate cancer (PCa), most patients would inevitably progress to castration-resistant prostate cancer (CRPC) which is the main cause of PCa death. Therefore, the identification of novel molecular mechanism regulating cancer progression and achievement of new insight into target therapy would be necessary for improving the benefits of PCa patients. This study aims to study the function and regulatory mechanism of HOTAIR/EZH2/miR-193a feedback loop in PCa progression.

View Article and Find Full Text PDF

Prostate cancer (PCa) is a leading cause of death among men. The dysregulation of metabolism and autophagy contributes to the progression of PCa. The transcription factor specificity protein 1 (Sp1) is implicated in the regulation of metabolism and autophagy.

View Article and Find Full Text PDF

Remote ischemic preconditioning (rIPC) is a reliable strategy for prevention of injury to various organs. However the mechanism by which it does so is still unclear. In the present study, serum and EVs isolated from ischemic preconditioned right renal venous perfusates were injected into rats with ischemia-reperfusion-injured kidneys immediately after reperfusion.

View Article and Find Full Text PDF

Accumulated evidence indicate that miR-744 functions as either tumor suppressor or oncogene in the progression of a variety of tumors, with a tumor type-specific way. However, little is known about how miR-744 impacts on the tumorigenesis of human prostate cancer. In this study, employing the analyses of microarray, qRT-PCR and re-analysis of MSKCC data, we found that CRPC tissues expressed much more miR-744 than ADPC tissues did, and the expression level of miR-744 was inversely associated with survival of CRPC patients.

View Article and Find Full Text PDF

Previously published studies explained that the excessive expression of miR-146a influences the prostate cancer (PCa) cells in terms of apoptosis, progression, and viability. Although miR-146a acts as a tumor suppressor, current knowledge on the molecular mechanisms that controls its expression in PCa is limited. In this study, gene set enrichment analysis (GSEA) showed negatively enriched expression of miR-146a target gene sets and positively enriched expression of gene sets suppressed by the enhancer of zeste homolog 2 (EZH2) after YY1 depletion in PCa cells.

View Article and Find Full Text PDF