Drug-loaded porous membranes have been deemed to be effective physicochemical barriers to separate postoperative adhesion-prone tissues in tendon healing. However, cell viability and subsequent tissue regeneration might be severely interfered with the unrestricted release and the locally excessive concentration of anti-inflammatory drugs. Herein, we report a double-layered membrane with sustained and uni-directional drug delivery features to prevent peritendinous adhesion without hampering the healing outcome.
View Article and Find Full Text PDFBackground: Inadequate repair capacity and disturbed immune compartments are the main pathological causes of tendinopathy. Transplantation of mesenchymal stem cells (MSCs) become an effective clinic option to alleviate tendinopathy. Interleukin-1β (IL-1β) could confer on MSCs enhanced immunoregulatory capability to remodel the repair microenvironment favoring tissue repair.
View Article and Find Full Text PDFTendinopathy is a condition characterized by chronic, complex, and multidimensional pathological changes in the tendons. The etiology of tendinopathy is the combination of several factors, and diabetes mellitus (DM) is a risk factor. Increasing evidence has shown that the diabetic microenvironment plays an important role in tendinopathy.
View Article and Find Full Text PDFHeterotopic ossification (HO) represents an unwanted ossific wound healing response to the soft tissue injury which caused catastrophic limb dysfunction. Recent studies established the involvement of inflammation and cellular senescence in the tissue healing process, though their role in HO still remained to be clarified. Here, a novel crosstalk where the pyroptotic macrophages aroused tendon-derived stem cells (TDSCs) senescence is revealed to encourage osteogenic healing during trauma-induced HO formation.
View Article and Find Full Text PDFTendon injury is a tricky and prevalent motor system disease, leading to compromised daily activity and disability. Insufficient regenerative capability and dysregulation of immune microenvironment are the leading causes of functional loss. First, this work identifies persistent oxidative stress and mitochondrial impairment in the regional tendon tissues postinjury.
View Article and Find Full Text PDFTendon injury is one of the most common musculoskeletal diseases in the world, severely challenging the public health care system. Electrospinning technique using polymer materials (i.e.
View Article and Find Full Text PDFHeterotopic ossification (HO) is one of the most intractable disorders following musculoskeletal injury and is characterized by the ectopic presence of bone tissue in the soft tissue leading to severe loss of function in the extremities. Recent studies have indicated that immune cell infiltration and inflammation are involved in aberrant bone formation. In this study, we found increased monocyte/macrophage and mast cell accumulation during early HO progression.
View Article and Find Full Text PDFBackground: Exosomes are extracellular vesicles of nano-structures and represent an emerging nano-scale acellular therapy in recent years. Tendon regeneration is a sophisticated process in the field of microsurgery due to its poor natural healing ability. To date, no successful long-term solution has been provided for the healing of tendon injuries.
View Article and Find Full Text PDFTo date, failed back surgery syndrome (FBSS) remains a therapy-refractory clinical condition after spinal surgery. The antiadhesion membrane is applied to prevent FBSS by isolating fibrosis; however, the inflammation stimulated by the foreign body and surgical trauma needs to be further resolved simultaneously. Therefore, we developed new electrospun polycaprolactone (PCL) fibrous membranes loaded with celecoxib (CEL) to prevent fibrosis and inflammation associated with FBSS.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2021
Skin wounds are associated with huge economic and emotional burdens for millions of people annually and are a challenge for health workers worldwide. At present, for skin defects after traumatic accidents, especially large-area skin defects, newly developed strategies such as the use of emerging biomaterials and cell therapy could be considered as options besides classic skin grafts. However, the new strategies have to deal with problems such as immune rejection and high costs for patients.
View Article and Find Full Text PDFIntroduction: Synthetic fibrous membranes unveil a promising field in anti-adhesion of tendons. Meanwhile, oriented nanofiber structures have been widely studied and used in the application of biomedical engineering, particularly in repairing and strengthening effects.
Methods: In this study, a bi-layer poly(L-lactic acid) (PLLA) electrospun membrane was fabricated, in which the inner oriented fibrous layer was designed to promote tendon healing while outer random aligned layer was designed to prevent peritendinous adhesion.
Mater Sci Eng C Mater Biol Appl
November 2020
Posttraumatic peritendinous adhesion leads to limb disability. Physical barrier was widely used and thus focus was paid to fabricate the hydrophobic surfaces of electrospun membrane for anti-adhesion. However, current methods are limited and complicated.
View Article and Find Full Text PDFPurpose: As a common complication of tendon injury, tendon adhesion is an unresolved problem in clinical work. The aim of this study was to investigate whether human umbilical cord mesenchymal stem cell-derived exosomes (HUMSC-Exos), one of the most promising new-generation cell-free therapeutic agents, can improve tendon adhesion and explore potential-related mechanisms.
Methods: The rat Achilles tendon injury adhesion model was constructed in vivo, and the localization of HUMSC-Exos was used to evaluate the tendon adhesion.
Front Bioeng Biotechnol
May 2020
Anti-adhesion membranes are prospective scaffolds for preventing peritendinous adhesion after injury. However, currently available scaffolds have some limitations, such as low efficacy for anti-adhesion, low quality of tendon healing, and unknown drug interactions. Thus, in this study, we designed an innovative structure involving an integrated dual-layer poly(L-lactic acid) (PLLA) electrospun membrane for preventing peritendonous adhesion by promoting tendon gliding.
View Article and Find Full Text PDFObjectives: In peripheral neuropathy, the underlying mechanisms of nerve and muscle degeneration include chronic inflammation and oxidative stress in fibrotic tissues. (-)-Epigallocatechin gallate (EGCG) is a major, active component in green tea and may scavenge free radical oxygen and attenuate inflammation. Conservative treatments such as steroid injection only deal with early, asymptomatic, peripheral neuropathy.
View Article and Find Full Text PDFTraumatic peritendinous fibrosis is a worldwide clinical problem resulting in severe limb disability. Hydroxycamptothecin (HCPT) is an anti-neoplastic drug widely exploited in clinical practice. It has shown potential of anti-fibrosis in recent years.
View Article and Find Full Text PDFPeritendinous fibrosis, which leads to impaired tendon function, is a clinical problem worldwide, and it is urgent to explore potential ways to reduce the formation of peritendinous adhesion. Several studies have demonstrated the biological roles of hydroxycamptothecin (HCPT) in inhibiting fibrosis in different tissues. In this study, we investigated whether HCPT could inhibit tendon fibrosis in vitro.
View Article and Find Full Text PDFFollistain-like protein 1 (FSTL1), has been recently demonstrated to be involved in the embryo development of nervous system and glioblastoma. However, the role of FSTL1 in neuroinflammation remains unexplored. In this study, the expression of FSTL1 in astrocytes was verified and its role was studied in neuroinflammation induced by in vivo intracerebroventricular (ICV) injection of lipopolysaccharide (LPS) or LPS treatment to astrocytes in vitro.
View Article and Find Full Text PDFMatrix metalloproteinase 13 (MMP-13) plays an important role in the process of pro-inflammatory cytokine-induced intervertebral disc degeneration (IDD). This study examined the effect of IL-17 on the regulation of MMP-13 and the extracellular matrix (ECM) in the intervertebral disc (IVD). We then examined whether salubrinal, a known inhibitor of eIF2α dephosphorylation, inhibited the IL-17-induced changes mentioned above.
View Article and Find Full Text PDFThe exploitation of intercalation techniques in the field of two-dimensional layered materials offers unique opportunities for controlling chemical reactions in confined spaces and developing nanocomposites with desired functionality. In this study, the exploitation of the novel and facile "one-pot" anion-exchange method for the functionalization of layered double hydroxides (LDHs) is demonstrated. As a proof-of-concept, we demonstrate the intercalation of a series of polyoxometalate (POM) clusters, Na3[PW12O40]⋅15 H2O (Na3PW12), K6[P2W18O62]⋅14 H2O (K6P2W18), and Na9LaW10O36⋅32 H2O (Na9LaW10) into tris(hydroxymethyl)aminomethane (Tris)-modified layered double hydroxides (LDHs) under ambient conditions without the necessity of degassing CO2.
View Article and Find Full Text PDF