The effective prevention and treatment of anastomotic leakage after intestinal anastomosis for colorectal diseases is still a major clinical challenge. In order to assist intestinal anastomosis healing and avoid anastomotic leakage caused by high tension, low blood supply or infection, we designed a double-layer nanofiber intestinal anastomosis scaffold, which was composed of electrospun PTMC/PHA nanofibers as the main layer, and electrospun PVA/OHA-Gs nanofibers with antibacterial properties as the antibacterial surface layer. This double-layer scaffold has good toughness, its maximum tensile force value could reach 8 N, elongation could reach 400 %, and it has hydrophilic properties, and its contact angle was about 60°.
View Article and Find Full Text PDFUncontrolled expansion of shape memory sponges face a significant challenge in the treatment of lethal incompressible hemorrhage, which can lead to blood overflow or damage to the surrounding tissue. Herein, we developed a polydopamine functionalized polyurethane shape memory sponge (PDA-TPI-PU) with a controllable degree of expansion by near-infrared (NIR) light-triggered stimulation for the treatment of incompressible hemorrhage. The sponge has excellent liquid absorption performance and robust mechanical strength as well as good photothermal conversion ability.
View Article and Find Full Text PDFIt remains a challenge to develop effective hemostatic products in battlefield rescue for noncompressible massive hemorrhage. Some previous research had concentrated on the modification of different materials to improve the hemostasis ability of sponges. Herein, to investigate the relationship between the taper of microchannels and hemostatic performance of porous sponges, gelatin methacryloyl-based sponges with designed conical microchannels and a disordered porous structure were prepared using the 3D printing method and freeze-drying technology.
View Article and Find Full Text PDFThe newly attractive peroxynitrite (ONOO) therapy can prominently enhance antibacterial therapeutic efficacy. However, it is a great challenge but urgently needed to generate ONOO with adjustable release rate and dosage in order to satisfy personalized treatments for different disease types and severities. Herein, PSNO@IR780 nanoparticles are fabricated via co-assembly of an amphiphilic PEG-b-PAASNO block copolymer grafted with abundant nitric oxide (NO) donor units and IR780 as a photothermal and photodynamic agent.
View Article and Find Full Text PDFBiodegradable anastomat play an important role in the reconstruction process of the digestive tract. However, the biocompatibility and organizational compliance of anastomotic tubes still need to be improved. Electrospun tissue engineering scaffolds have excellent biomimetic extracellular matrix properties, biocompatibility and biodegradability.
View Article and Find Full Text PDFIt is challenging for traditional hemostatic sponges to control massive and noncompressible hemorrhages in the military field and accidental trauma. In this work, a series of highly fluid-absorbent composite sponges with rapid expansion ability based on norbornene anhydride-modified poly(vinyl alcohol) and gelatin (PVA@Gel-Sps) were developed by a foaming technique, chemical and physical crosslinking reactions and lyophilization. The prepared PVA@Gel-Sp exhibited a 3500% maximum water absorption ratio with a fast water absorption speed, which was suitable for blood component concentration.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2020
It is important to develop effective, biocompatible, easily stored and affordable hemostats for controlling bleeding and preventing infection in prehospital trauma. In this study, we synthesized a series of alginate-based composite microspheres coated by different amounts of berberine (SCC-1B, SCC-5B and SCC-10B), which were further characterized using scanning electron microscopy (SEM), viscometer, particle analyzer and Fourier transform infrared (FT-IR) spectroscopy. The in vitro and vivo results demonstrated that compared to control group (SCC, Composite polysaccharide microspheres without berberine, and CMPHP, Commercial hemostatic agent), SCC-10B with proper content berberine (7%), not only exhibited inherent excellent antibacterial activity, but also enhanced hemostatic effect by increasing adhesion and aggregation of blood cells, which could be considered as synergistic effects.
View Article and Find Full Text PDFIn the search for biocompatible composite microspheres to be used as a hemostatic agent, in a previous study, we designed a novel biomaterial, consisting of composite microspheres containing three natural biological ingredients, carboxymethyl chitosan, sodium alginate and collagen (CSCM). Furthermore, the chemical and physical properties, hemostatic ability, biocompatibility and cytotoxicity were investigated in vitro. In this work, the in vivo hemostatic performance, wound healing, hemocompatibility, histocompatibility, and biodegradability were evaluated by a series of experiments.
View Article and Find Full Text PDF