Superhydrophilic surfaces have attracted great interest in antifogging applications. However, balancing long-lasting superhydrophilicity and high transparency on antifogging surfaces remains a serious problem to be solved. The objective of this work is to prepare superhydrophilic coatings with transparent and long-lasting antifogging properties.
View Article and Find Full Text PDFGraphene, with its high thermal conductivity (), excellent mechanical properties, and thermal stability, is an ideal filler for developing advanced high and heat dissipation materials. However, creating graphene-based polymer nanocomposites (GPNs) with high remains a significant challenge to meet the demand for efficient heat dissipation. Here, the effects of graphene material and structure on thermal properties are investigated from both microscopic and macroscopic perspectives.
View Article and Find Full Text PDFSuperspreading surfaces with excellent water transport efficiency are highly desirable for addressing thermal failures through the liquid-vapor phase change of water in electronics thermal management applications. However, the trade-off between capillary pressure and viscous resistance in traditional superspreading surfaces with micro/ nanostructures poses a longstanding challenge in the development of superspreading surfaces with high cooling efficiency in confined spaces. Herein, a heat-treated hierarchical porous enhanced superspreading surface (HTHP) for highly efficient electronic cooling is proposed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2024
Surface-initiated iron(0)-mediated controlled radical polymerization (SI-FeCRP) with low toxicity and excellent biocompatibility is promising for the fabrication of biofunctional polymer coatings. However, the development of Fe(0)-based catalysts remains limited by the lower dissociation activity of the Fe(0) surface in comparison to Cu(0). Here, we found that, by simply polishing the Fe(0) plate surface with sandpaper, the poly(methacryloyloxy)ethyl trimethylammonium chloride brush growth rate has been increased significantly to 3.
View Article and Find Full Text PDFHydrogels with wet adhesion are promising interfacial adhesive materials; however, their adhesion in water, oil, or organic solvents remains a major challenge. To address this, a pressure-sensitive P(AAm-co-C )/PTA-Fe hydrogel is fabricated, which exhibits robust adhesion to various substrates in both aqueous solutions and oil environments. It is demonstrated that the key to wet adhesion under liquid conditions is the removal of the interfacial liquid, which can be achieved through rational molecular composition regulation.
View Article and Find Full Text PDFMaterials require specific surface structures to achieve the best performance, but achieving an optimal structural design requires a systematic study of how structure affects performance. In this work, we comprehensively and systematically investigated the structure-activity relationship between the nanowire structure and the oil dewetting self-cleaning performance. It is easy for an oil droplet to enter this structure, but it is difficult for it to escape from the gaps between the structures even under the action of water.
View Article and Find Full Text PDFIn this study, an efficient on-site marine oil spillage monitoring probe was developed by fixing oxygen consumption sensors into hydrophobic/oleophilic oil-absorbing porous materials. The impact of thickness and characters of the porous materials, the types of spilled oil, and the presence of salts and vibration in water on the parameters of the obtained signals was investigated. The probe could be used to detect the various representative types of spilled oils including lubricating oil, corn oil, soybean oil, -hexane, petroleum ether and toluene, even in simulated sea water vibrating at different levels, having over 33 times reduced reliable low detection limit (RLDL) in detecting soybean oil in water (from 36.
View Article and Find Full Text PDFHypothesis: Transparent superhydrophilic coatings are very promising in various scenarios. Appropriate fabrication of colloid coatings with superhydrophilicity both in air and under oil would enlarge their application potential in anti-oil fouling and facilitate anti-fogging of transparent surfaces.
Experiments: The Barite colloid was obtained from a one-step precipitation method and was transferred onto glasses to prepare transparent coatings with different thicknesses simply by dip-coating.
A photocatalytic membrane with significant degradation and antifouling performance has become an important part in wastewater treatment. However, the low catalyst loading on the polymer membrane limits its performance improvement. Herein, we fabricated poly(vinylidene fluoride) (PVDF) and poly(acrylic acid) (PAA) blend membranes with a rough surface via a vapor-induced phase separation (VIPS) process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2021
Viscous oil adherence onto solid surfaces is ubiquitous and has caused intractable fouling problems, impairing the function of solid surfaces in various areas such as optics and separation membranes. Materials with superhydrophilicity and underwater superoleophobicity are very effective in elimination of oil fouling. However, most of them cannot dewet viscous oils and may malfunction without prehydration treatment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
Based on the superhydrophilicity of titanium dioxide (TiO) after ultraviolet irradiation, it has a high potential in the application of antifogging. However, a durable superhydrophilic state and a broader photoresponse range are necessary. Considering the enhancement of the photoresponse of TiO, doping is an effective method to prolong the superhydrophilic state.
View Article and Find Full Text PDFSupra-wetting materials, especially superhydrophobic absorption materials, as an emerging advanced oil-water separation material have attracted extensive concern in the treatment of oil spillage and industrial oily wastewater. However, it is still a challenge to fabricate robust and multifunctional superhydrophobic materials for the multitasking oil-water separation and fast clean-up of the viscous crude oil by an environment-friendly and scalable method. Herein, a solid-solid phase ball-milling strategy without chemical reagent-free modification was proposed to construct heterogeneous superhydrophobic composites by using waste soot as the solid-phase superhydrophobic modifier.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
Recycling has attracted great attention in academia, because of the economic and environmental benefits to industry. An eco-friendly strategy for recycling office waste paper (WP) was used to sustainedly separate oil-water mixtures. The hydroxyl groups of cellulose endow WP with superlipophilic and superhydrophilic properties in air and superoleophobic features under water.
View Article and Find Full Text PDFInspired by nature, Janus membranes with unidirectional liquid transport (ULT) were developed to be used in the fields of fog collection, moisture-wicking fabrics, demulsification, etc. However, the obtained Janus membranes are often unifunctional, and it is still a great challenge to adjust the ULT of Janus membranes for multifunctional applications. Herein, a scalable, low-cost, and machine-washable Janus membrane was developed by combining the cyclic self-assembly of phytic acid and Fe and a one-side spraying coating of poly(dimethylsiloxane) (PDMS), featuring adjustable ULT upon challenge for multifunctional applications.
View Article and Find Full Text PDFWith the development of research on superwettability materials, superhydrophobic and superoleophilic materials show superior separation ability in oil-water separation due to their excellent oil-water selectivity. However, due to the super wetting ability of the oil to the material, it is difficult to clean and reuse after adsorbing the oil spill. Therefore, how to realize the complete regeneration of superhydrophobic and superoleophilic materials is still a worldwide problem.
View Article and Find Full Text PDFPhytic acid (PA), which is a natural and innoxious plant constituent, can strongly adsorb on the metal surface because of its six phosphate groups. In this work, based on the chelating properties of PA and the reaction between PA and hydrolyzable vinyltriethoxysilane (VTES), we developed a novel and facial strategy to generate hierarchical-layer nanospheres on the metal mesh surface and fabricated robust superhydrophobic and superoleophilic miniature metal mesh ships. Because of their superwetting properties, the modified meshes could easily remove and recycle the oil spills from the water surface (>90% collection efficiency), and have high oil/water separation capacity (>96%).
View Article and Find Full Text PDFThe superhydrophilic self-cleaning surface can perfectly deal with oil pollution, which cannot be realized by the superhydrophobic surface. This research is designed to study the mechanism of wetting behavior of superhydrophilic coating with different function groups and guide to design a stable self-cleaning surface. We prepare several hydrophilic coatings including nonionic, ionic, and zwitterionic coatings to investigate their self-cleaning performance underwater when they have been polluted by oil in the dry state.
View Article and Find Full Text PDFDual pH- and thermo-responsive polysulfone (PSf) membranes with three-dimensionally interconnected networks are fabricated by introducing poly(acrylic acid-co-N-isopropylacrylamide) (P(AA-NIPAm)) into the membrane surfaces and pore walls during membrane formation via a vapor-liquid induced phase separation (V-LIPS) process. After introducing the copolymers of P(AA-NIPAm), the fabricated membranes exhibit impressive open network pores on the surfaces, meanwhile their cross-sectional structure turns from classical asymmetric finger-like structure into bi-continuous nanopores throughout the whole thickness of membrane, due to high solution viscosity and low mass transfer rate of VIPS process. Furthermore, pure water permeation tests show that the pure water permeation (L) and the molecular weight cutoff (MWCO) of the fabricated PSf/P(AA-NIPAm) membranes increases sharply as the solution pH decreases from 12.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2018
The superamphiphobic surfaces with extreme repellency to liquids are very attractive in many fields, but their fabrication processes are always low effective and expensive. So it is still a challenge to create the superamphiphobic surfaces by simple, time saving and universal method. In this work, the mossy zinc (Zn) filaments, a promising re-entrant structure, was rapidly constructed on various metal surfaces by electrochemical deposition approach.
View Article and Find Full Text PDFIn situ pegylated (PEGylated) microporous membranes have been extensively reported using poly(ethylene glycol) (PEG)-based polymers as blending additives. Alternatively, free standing PEGylated polysulfone (PSf) membranes with excellent hydrophilicity and antifouling ability were directly fabricated from polysulfone/poly(ethylene glycol) methyl ether methacrylate (PSf/PEGMA) solutions after in situ cross-linking polymerization without any treatment via vapor induced phase separation (VIPS) process for the first time. The microstructures and performances of the resulting membranes shifted regularly by adjusting exposure time of the liquid film in humid air.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2018
Continuous growth of traditional monolayer CrN coatings up to 24 h is successfully achieved to fabricate ultrathickness of up to 80 μm on the 316 stainless steel substrate using a multiarc ion plating technique. The microstructures, mechanical properties, and tribological properties evolution with the CrN coating continuously growing was evaluated in detail. The transmission electron microscopy observations and inverse Fourier-filtered images reveal a relaxation mechanism during the continuous growth of CrN coating, which can lead to a decrease in the residual stress when coating growth time exceeds 5 h.
View Article and Find Full Text PDFPolysulfone (PSf) membrane has been widely used in water separation and purification, although, membrane fouling is still a serious problem limiting its potential. We aim to improve the antifouling of PSf membranes via a very simple and efficient method. In this work, antifouling PSf membranes were fabricated via in situ cross-linked polymerization coupled with non-solvent induced phase separation.
View Article and Find Full Text PDFCompliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied.
View Article and Find Full Text PDF