Objective: The clinical course of COVID-19, as well as the immunological reaction, is notable for its extreme variability. Identifying the main associated factors might help understand the disease progression and physiological status of COVID-19 patients. The dynamic changes of the antibody against Spike protein are crucial for understanding the immune response.
View Article and Find Full Text PDFPhys Rev E
November 2023
Normal life activities between cells rely crucially on the homeostasis of the cellular microenvironment, but aging and cancer will upset this balance. In this paper we introduce the microenvironmental feedback mechanism to the growth dynamics of multicellular organisms, which changes the cellular competitive ability and thereby regulates the growth of multicellular organisms. We show that the presence of microenvironmental feedback can effectively delay aging, but cancer cells may grow uncontrollably due to the emergence of the tumor microenvironment (TME).
View Article and Find Full Text PDFDiversity is omnipresent in natural and synthetic extended systems, the phenomenon of diversity-induced resonance (DIR), wherein a moderate degree of the diversity can provoke an optimal collective response, provides researchers a brand-new strategy to amplify and utilize the weak signal. As yet the relevant advances focus mostly on the ideal situations where the interactions among elements are uncorrelated with the physical proximity of agents. Such a consideration overlooks interactions mediated by the motion of agents in space.
View Article and Find Full Text PDFOvarian cancer (OC) is one of the most common and high mortality type of cancer among women worldwide. The majority of patients with OC respond to chemotherapy initially; however, most of them become resistant to chemotherapy and results in a high level of treatment failure in OC. Therefore, novel agents for the treatment of OC are urgently required.
View Article and Find Full Text PDFIntroduction: There is abundant evidence to suggest that cytokines play a part in the mechanisms responsible for the formation of endometrium heterotopy. Cytokine synthesis is not only determined by the body's immunological reactivity but also by polymorphisms in the immune regulatory genes. The study of these polymorphisms in the immune regulatory genes offers up new possibilities in terms of prognosticating the risk of endometriosis and susceptibility to its treatment.
View Article and Find Full Text PDFResults show that the astrocytes can not only listen to the talk of large assemble of neurons but also give advice to the conversations and are significant sources of heterogeneous couplings as well. In the present work, we focus on such regulation character of astrocytes and explore the role of heterogeneous couplings among interacted neuron-astrocyte components in a signal response. We consider reduced dynamics in which the listening and advising processes of astrocytes are mapped into the form of group coupling, where the couplings are normally distributed.
View Article and Find Full Text PDFA moderate degree of diversity, in form of quenched noise or intrinsic heterogeneity, can significantly strengthen the collective response of coupled extended systems. As yet, related discoveries on diversity-induced resonance are mainly concentrated on symmetrically distributed heterogeneity, e.g.
View Article and Find Full Text PDFEvacuation dynamics of pedestrians in a square room with one exit is studied. The movement of the pedestrians is guided by the static floor field model. Whenever multiple pedestrians are trying to move to the same target position, a game theoretical framework is introduced to address the conflict.
View Article and Find Full Text PDFThe optimal organization for functional segregation and integration in brain is made evident by the "small-world" feature of functional connectivity (FC) networks and is further supported by the loss of this feature that has been described in many types of brain disease. However, it remains unknown how such optimally organized FC networks arise from the brain's structural constrains. On the other hand, an emerging literature suggests that brain function may be supported by critical neural dynamics, which is believed to facilitate information processing in brain.
View Article and Find Full Text PDFWe develop a theory for the susceptible-infected-susceptible (SIS) epidemic model on networks that incorporate both network structure and dynamic correlations. This theory can account for the multistage onset of the epidemic phase in scale-free networks. This phenomenon is characterized by multiple peaks in the susceptibility as a function of the infection rate.
View Article and Find Full Text PDFWe investigate the occurrence of synchronous population activities in a neuronal network composed of both excitatory and inhibitory neurons and equipped with short-term synaptic plasticity. The collective firing patterns with different macroscopic properties emerge visually with the change of system parameters, and most long-time collective evolution also shows periodic-like characteristics. We systematically discuss the pattern-formation dynamics on a microscopic level and find a lot of hidden features of the population activities.
View Article and Find Full Text PDFSeveral studies have revealed that miR-205 plays important roles in the development of gynecological cancers and thus may serve as a potential prognostic biomarker, but the current conclusions remain controversial. Therefore, the goal of this study was to explore the prognostic significance and functional mechanisms of miR-205 based on a meta-analysis and bioinformatics investigation. A total of 14 published studies containing 5835 patients were enrolled by searching the PubMed, EMBASE, and Cochrane library databases, 13 (14 datasets) and 5 (6 datasets) of which evaluated the correlations between the expression level of miR-205 and overall survival (OS) or disease-free survival (DFS)/disease-specific survival (DSS)/progression-free survival (PFS)/distant metastasis-free survival (DMFS), respectively.
View Article and Find Full Text PDFWhenever a dynamical process unfolds on static networks, the dynamical state of any focal individual will be exclusively influenced by directly connected neighbors, rather than by those unconnected ones, hence the arising of the dynamical correlation problem, where mean-field-based methods fail to capture the scenario. The dynamic correlation coupling problem has always been an important and difficult problem in the theoretical field of physics. The explicit analytical expressions and the decoupling methods often play a key role in the development of corresponding field.
View Article and Find Full Text PDFEconomic studies have shown that there are two types of regulation schemes which can be considered as a vital part of today's global economy: self-regulation enforced by self-regulation organizations to govern industry practices and government regulation which is considered as another scheme to sustain corporate adherence. An outstanding problem of particular interest is to understand quantitatively the role of these regulation schemes in evolutionary dynamics. Typically, punishment usually occurs for enforcement of regulations.
View Article and Find Full Text PDFThe aim of the present meta-analysis study was to determine the association between pre-treatment thrombocytosis and prognosis of patients with endometrial cancer. Articles published prior to December 2018 containing information on platelet count and endometrial cancer were searched in the PubMed, Embase and the Cochrane Library databases. A platelet count of ≥350 or >400×10/l was considered to indicate thrombocytosis.
View Article and Find Full Text PDFMultipartite viruses have a genome divided into different disconnected viral particles. A majority of multipartite viruses infect plants; very few target animals. To understand why, we use a simple, network-based susceptible-latent-infectious-recovered model.
View Article and Find Full Text PDFThis paper investigates the evolution of cooperation and the emergence of hierarchical leadership structure in random regular graphs. It is found that there exist different learning patterns between cooperators and defectors, and cooperators are able to attract more followers and hence more likely to become leaders. Hence, the heterogeneous distributions of reputation and leadership can emerge from homogeneous random graphs.
View Article and Find Full Text PDFThis study aimed to construct a long noncoding RNA (lncRNA)-based prognostic signature to improve the survival prediction for endometrial cancer (EC) patients and guide individualized treatments. mRNA and miRNA sequencing and clinical data of 526 patients with EC (randomized to training or validation set, = 263) were collected from The Cancer Genome Atlas database. Differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs), and differentially expressed miRNAs (DEMs) were identified between 263 EC samples and 33 normal controls.
View Article and Find Full Text PDFWe combine the velocity alignment and aggregation mechanisms to study the collective motion of active agents in noisy circumstances. The agents are located on a two-dimensional square plane, and the proportion of velocity alignment and aggregation interactions are, respectively, set to be k and 1-k. In the case of k=1 our model is similar to the classical Vicsek model, while it degenerates to the view angle model for k=0.
View Article and Find Full Text PDFWe investigate the susceptible-infected-recovered-susceptible epidemic model, typical of mathematical epidemiology, with the diversity of the durations of infection and recovery of the individuals on small-world networks. Infection spreads from infected to healthy nodes, whose infection and recovery periods denoted by τ and τ, respectively, are either fixed or uniformly distributed around a specified mean. Whenever τ and τ are narrowly distributed around their mean values, the epidemic prevalence in the stationary state is found to reach its maximal level in the typical small-world region.
View Article and Find Full Text PDFRecently, Antonioni and Cardillo proposed a coevolutionary model based on the intertwining of oscillator synchronization and evolutionary game theory [Phys. Rev. Lett.
View Article and Find Full Text PDFIn this paper, we study the evolution of cooperation in structured populations (individuals are located on either a regular lattice or a scale-free network) in the context of repeated games by involving three types of strategies, namely, unconditional cooperation, unconditional defection, and extortion. The strategy updating of the players is ruled by the replicator-like dynamics. We find that extortion strategies can act as catalysts to promote the emergence of cooperation in structured populations via different mechanisms.
View Article and Find Full Text PDFIn this work, we use the approximate-master-equation approach to study the dynamics of the Kinouchi-Copelli neural model on various networks. By categorizing each neuron in terms of its state and also the states of its neighbors, we are able to uncover how the coupled system evolves with respective to time by directly solving a set of ordinary differential equations. In particular, we can easily calculate the statistical properties of the time evolution of the network instantaneous response, the network response curve, the dynamic range, and the critical point in the framework of the approximate-master-equation approach.
View Article and Find Full Text PDFRange expansion of species is driven by the interactions among individual- and population-level processes and the spatial pattern of habitats. In this work we study how cooperatively growing populations spread on networks representing the skeleton of complex landscapes. By separating the slow and fast variables of the expansion process, we are able to give analytical predictions for the critical conditions that divide the dynamic behaviors into different phases (extinction, localized survival, and global expansion).
View Article and Find Full Text PDFThe dependency property and self-recovery of failure nodes both have great effects on the robustness of networks during the cascading process. Existing investigations focused mainly on the failure mechanism of static dependency groups without considering the time-dependency of interdependent nodes and the recovery mechanism in reality. In this study, we present an evolving network model consisting of failure mechanisms and a recovery mechanism to explore network robustness, where the dependency relations among nodes vary over time.
View Article and Find Full Text PDF