Epoxy composites with high thermal conductivity, excellent dielectric, and mechanical properties are very promising for solving epoxy cracking faults in reactors and for extending their service life. In this work, we report on epoxy composites enhanced by ternary fillers of boron nitride nanosheets (BNNSs), multiwalled carbon nanotubes (MWCNTs), and silica (SiO) nanoparticles. The obtained BNNSs/MWCNTs/SiO/epoxy composites exhibit a high thermal conductivity of 0.
View Article and Find Full Text PDFTwo long-period fiber gratings (LPFGs) used to separately suppress the stimulated-Raman-scattering (SRS) in the seed and amplifier of kW-level continuous-wave (CW) MOPA fiber laser are developed in this paper. A process that combines constant-low-temperature and dynamic-high-temperature annealing was employed to reduce the thermal slopes of 10/130 µm (diameter of core/cladding fiber) and 14/250 LPFGs, used in the seed and amplifier respectively, from 0.48 °C/W to 0.
View Article and Find Full Text PDF1. Metabolism and disposition of ABT-894 was investigated in hepatocytes, in mice and monkeys receiving [(14)C]ABT-894. 2.
View Article and Find Full Text PDFMetabolism of ABT-107 was investigated in in vitro hepatic systems, in rat and monkey receiving [¹⁴C]ABT-107, and in vivo plasma in rat, dog, monkey and human. In in vitro hepatic systems, ABT-107 was primarily cleared via oxidative metabolism, and proceeded via two parallel pathways. Pathway 1, ABT-107 was oxidized at the nitrogen of quinuclidine moiety to form M1.
View Article and Find Full Text PDFIn an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
View Article and Find Full Text PDFNeuronal nitric-oxide synthase (nNOS) contains a unique autoinhibitory insert (AI) in its FMN subdomain that represses nNOS reductase activities and controls the calcium sensitivity of calmodulin (CaM) binding to nNOS. How the AI does this is unclear. A conserved charged residue (Lys(842)) lies within a putative CaM binding helix in the middle of the AI.
View Article and Find Full Text PDFNeutrophils encounter and 'prioritize' many chemoattractants in their pursuit of bacteria. Here we tested the possibility that the phosphatase PTEN is responsible for the prioritization of chemoattractants. Neutrophils induced chemotaxis by two separate pathways, the phosphatidylinositol-3-OH kinase (PI(3)K) phosphatase and tensin homolog (PTEN) pathway, and the p38 mitogen-activated protein kinase pathway, with the p38 pathway dominating over the PI(3)K pathway.
View Article and Find Full Text PDFInhibitors of hepatitis C virus (HCV) protease have shown marked antiviral activity in short-term clinical studies in HCV-infected individuals. The interaction of the investigational HCV protease inhibitors VX-950 and SCH 503034 with ritonavir, a potent inhibitor of cytochrome P450 3A, was studied in vitro and in vivo. In rat and human liver microsomes, the metabolism of VX-950 and SCH 503034 was strongly inhibited by the presence of 4 microM ritonavir.
View Article and Find Full Text PDFWe have analyzed the mechanism of one-electron reduction of adriamycin (Adr) using recombinant full-length human neuronal nitric-oxide synthase and its flavin domains. Both enzymes catalyzed aerobic NADPH oxidation in the presence of Adr. Calcium/calmodulin (Ca(2+)/CaM) stimulated the NADPH oxidation of Adr.
View Article and Find Full Text PDFNeuronal nitric-oxide synthase (nNOS) differs from inducible NOS (iNOS) in both its dependence on the intracellular Ca2+ concentration and the production rate of NO. To investigate what difference(s) exist between the two NOS flavin domains at the electron transfer level, we isolated the recombinant human NOS flavin domains, which were co-expressed with human calmodulin (CaM). The flavin semiquinones, FADH* and FMNH*, in both NOSs participate in the regulation of one-electron transfer within the flavin domain.
View Article and Find Full Text PDFThe objective of this study was to clarify the mechanism of electron transfer in the human neuronal nitric oxide synthase (nNOS) flavin domain using the recombinant human nNOS flavin domains, the FAD/NADPH domain (contains FAD- and NADPH-binding sites), and the FAD/FMN domain (the flavin domain including a calmodulin-binding site). The reduction by NADPH of the two domains was studied by rapid-mixing, stopped-flow spectroscopy. For the FAD/NADPH domain, the results indicate that FAD is reduced by NADPH to generate the two-electron-reduced form (FADH(2)) and the reoxidation of the reduced FAD proceeds via a neutral (blue) semiquinone with molecular oxygen or ferricyanide, indicating that the reduced FAD is oxidized in two successive one-electron steps.
View Article and Find Full Text PDF