Publications by authors named "Zhiwang Huang"

Artificial skins are biomaterials that can replace the lost skin or promote the regeneration of damaged skin. Skin regenerative biomaterials are highly applauded because they can exempt patients with severe burns from the painful procedure of autologous skin transplantation. Notwithstanding decades of research, biocompatible, degradable, and printable biomaterials that can effectively promote skin regeneration as a transplantation replacement in clinical use are still scarce.

View Article and Find Full Text PDF

Acute injury of the articular cartilage can lead to chronic disabling conditions because of the limited self-repair capability of the cartilage. Implantation of stem cells at the injury site is a viable treatment, but requires a scaffold with a precisely controlled geometry and porosity in the 3D space, high biocompatibility, and the capability of promoting chondrogenic differentiation of the implanted stem cells. Here we report the development of gelatin/hydroxyapatite (HAP) hybrid materials by microextrusion 3D bioprinting and enzymatic cross-linking as the scaffold for human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs).

View Article and Find Full Text PDF

To provide a novel approach for the clinical treatment of cartilage tissue defects, we prepared a new type of magnetic nanocomposite hydrogel with an optimal raw material ratio using FeO, polyvinyl alcohol (PVA), and type-II collagen (COLII). Briefly, five groups of PVA and collagen hydrogel matrices with different mass ratios were prepared by a combination of repeated thawing cycles and foam-frozen ice crystal separation methods. Microscopic characterization was conducted using electron microscopy, and the biomechanical properties of each group of hydrogels were then tested.

View Article and Find Full Text PDF

Hydrogel is an important scaffold material in regenerative medicine and cartilage tissue engineering. Hydrogel material combined with pulse electromagnetic fields (PEMFs), PEMFs has the potential to manage the repair of defective articular cartilage. Here, we developed a new type of magnetic hydrogel.

View Article and Find Full Text PDF

Pulsed electromagnetic field therapy, or pulsed signal therapy, has shown efficacy in treating many illnesses, including knee osteoarthritis. Although the mechanism is not fully understood, magnetic therapy is broadly welcomed because of its safe and noninvasive nature. At the cellular and molecular level, remote control of the cell fate by the magnetic field also has profound applications in both basic science and translational research.

View Article and Find Full Text PDF