Publications by authors named "Zhiting Cao"

Article Synopsis
  • Oral delivery of proteins (like medicines) is tricky because strong stomach acids and enzymes can break them down.
  • Scientists suggest using a special clay called montmorillonite (MMT) to help deliver these proteins safely to the gut without breaking them.
  • This MMT can help keep the proteins active and also improve gut health by promoting helpful bacteria that boost the immune system.
View Article and Find Full Text PDF

Correction for 'Oral delivery of a platinum anticancer drug using lipid assisted polymeric nanoparticles' by Qinqin Cheng , , 2015, , 17536-17539, https://doi.org/10.1039/C5CC07853A.

View Article and Find Full Text PDF

The functions of natural killer (NK) and T cells in innate and adaptive immunity, as well as their functions in tumor eradication, are complementary and intertwined. Here we show that utilization of multi-specific antibodies or nano-antibodies capable of simultaneously targeting both NK and T cells could be a valuable approach in cancer immunotherapy. Here, we introduce a tri-specific Nano-Antibody (Tri-NAb), generated by immobilizing three types of monoclonal antibodies (mAbs), using an optimized albumin/polyester composite nanoparticle conjugated with anti-Fc antibody.

View Article and Find Full Text PDF

High basal autophagy and enhanced mitochondrial fission in triple-negative breast cancer (TNBC) cells support cell migration and promote plasticity of cancer cell metabolism. Here, we suggest a novel combination therapy approach for the treatment of TNBC that targets Drp1-mediated mitochondrial fission and autophagy pathways. Hydrogen sulfide (HS) mediates a myriad of biological processes, including autophagy and mitochondrial function.

View Article and Find Full Text PDF

Background: Ulcerative colitis (UC) is a major type of inflammatory bowel disease (IBD), which could induce bloody stool, diarrhea, colon atrophy and eventually lead to colorectal cancer. The conventional daily oral administration of drugs only relieve the inflammatory response of colon in the short term, Biological agents such as antibody drugs has proven its efficiency in inhibiting colitis, while the low drug bioavailability means that large doses of antibodies are required, ultimately causing systemic toxicity. Small interfering RNA (siRNA) has significant advantages over antibody drugs in terms of safety and efficacy, and it have been widely applied as potential candidates for a variety of inflammation-related diseases.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Sorafenib (sfb) is widely used in clinics for advanced HCC therapy. However, the therapeutic efficacy of sfb is suboptimal due to its poor water solubility, low bioavailability, and side effects.

View Article and Find Full Text PDF

Polymeric micelles hold great potential for anticancer drug delivery. Sufficient integrity of polymeric micelles after intravenous injection is critical for successful drug delivery to solid tumors, but accurate measurement of the in vivo micellar integrity remains challenging. Methods based on Förster resonance energy transfer (FRET) to monitor the in vivo micellar integrity are frequently used.

View Article and Find Full Text PDF

Polymeric nanoparticles (NPs) are an important category of drug delivery systems, and their fate is closely associated with delivery efficacy. Analysis of the protein corona on the surface of NPs to understand the fate of different NPs has been shown to be reliable but complicated and time-consuming. In this work, we establish a simple approach for predicting the fate of polymeric NPs.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a systemic autoimmune disease that can cause irreversible joint deformity. There is still no cure for RA, and current therapeutics, including methotrexate and adalimumab, cause serious off-target effects and systemic immunosuppression, which in turn increases the risk of infection. Bruton's tyrosine kinase (BTK) in macrophages and B cells has been demonstrated to be a promising therapeutic target for RA.

View Article and Find Full Text PDF

Organ transplantation is the only effective method to treat end-stage organ failure. However, it is continuously plagued by immune rejection, which is mostly caused by T cell-mediated reactions. Dendritic cells (DCs) are professional antigen-presenting cells, and blocking the costimulatory signaling molecule CD40 in DCs inhibits T cell activation and induces transplant tolerance.

View Article and Find Full Text PDF

The inherent features of small interfering RNA (siRNA), including a relatively high molecular weight, negative charge, and hydrophilic nature, lead to the widespread use of cationic polymers and lipid-based nanocarriers, which might induce potential cytotoxicity, thus limiting their clinical application. Here, we report a facile strategy for changing the inherent features of siRNA molecules by achieving hydrophobization. We found that the simple mixing of siRNA and doxorubicin hydrochloride (DOX·HCl) could form a hydrophobic complex, which was readily encapsulated into noncationic PEG- b-PLA micelles for systemic delivery.

View Article and Find Full Text PDF

The NLRP3 inflammasome is a well-studied target for the treatment of multiple inflammatory diseases, but how to promote the current therapeutics remains a large challenge. CRISPR/Cas9, as a gene editing tool, allows for direct ablation of NLRP3 at the genomic level. In this study, we screen an optimized cationic lipid-assisted nanoparticle (CLAN) to deliver Cas9 mRNA (mCas9) and guide RNA (gRNA) into macrophages.

View Article and Find Full Text PDF

Inflammation is closely related to the development of many diseases and is commonly characterized by abnormal infiltration of immune cells, especially neutrophils. The current therapeutics of inflammatory diseases give little attention to direct modulation of these diseases with respect to immune cells. Nanoparticles are applied for efficient drug delivery into the disease-related immune cells, but their performance is significantly affected by their surface properties.

View Article and Find Full Text PDF

Surface charge plays an important role in determining the interactions of nanoparticles with biological components. Substantial studies have demonstrated that surface charge affects the fate of nanoparticles after intravenous administration; however, few studies have investigated the effect of surface charge on the bioavailability and absorption of nanoparticles after oral administration. In this study, polymeric nanoparticles with a similar particle size and surface polyethylene glycol (PEG) density, but with varying surface charges (positive, negative and neutral), were developed to study the effect of surface charge on the oral absorption of polymeric nanoparticles.

View Article and Find Full Text PDF

The CRISPR/Cas9 gene editing technology holds promise for the treatment of multiple diseases. However, the inability to perform specific gene editing in targeted tissues and cells, which may cause off-target effects, is one of the critical bottlenecks for therapeutic application of CRISPR/Cas9. Herein, macrophage-specific promoter-driven Cas9 expression plasmids (pM458 and pM330) were constructed and encapsulated in cationic lipid-assisted PEG-b-PLGA nanoparticles (CLAN).

View Article and Find Full Text PDF

Cancer stem cells (CSCs) have garnered increasing attention over the past decade, as they are believed to play a crucial role in tumor initiation, progression and metastasis, relapse and drug resistance. Therapeutic strategies which simultaneously exterminate both bulk tumor cells and the rare CSC subpopulation may produce striking response and result in long-term tumor remission. Accumulating evidence provides insight into the function of autophagy in maintenance, plasticity and survival of CSCs.

View Article and Find Full Text PDF

Chemotherapy resistance has become a major challenge in the clinical treatment of lung cancer which is the leading cancer type for the estimated deaths. Recent studies have shown that nanoparticles as drug carriers can raise intracellular drug concentration by achieving effectively cellular uptake and rapid drug release, and therefore reverse the acquired chemoresistance of tumors. In this context, nanoparticles-based chemotherapy represents a promising strategy for treating malignancies with chemoresistance.

View Article and Find Full Text PDF

A principal goal of cancer nanomedicine is to deliver therapeutics effectively to cancer cells within solid tumors. However, there are a series of biological barriers that impede nanomedicine from reaching target cells. Here, we report a stimuli-responsive clustered nanoparticle to systematically overcome these multiple barriers by sequentially responding to the endogenous attributes of the tumor microenvironment.

View Article and Find Full Text PDF

Successful bench-to-bedside translation of nanomedicine relies heavily on the development of nanocarriers with superior therapeutic efficacy and high biocompatibility. However, the optimal strategy for improving one aspect often conflicts with the other. Herein, we report a tactic of designing tumor-pH-labile linkage-bridged copolymers of clinically validated poly(D,L-lactide) and poly(ethylene glycol) (PEG-Dlink(m)-PDLLA) for safe and effective drug delivery.

View Article and Find Full Text PDF

Cancer stem cells (CSCs), which hold a high capacity for self-renewal, play a central role in the development, metastasis, and recurrence of various malignancies. CSCs must be eradicated to cure instances of cancer; however, because they can reside far from tumor vessels, they are not easily targeted by drug agents carried by nanoparticle-based drug delivery systems. We herein demonstrate that promoting tumor penetration of nanoparticles by transforming growth factor β (TGF-β) signaling pathway inhibition facilitates CSC therapy.

View Article and Find Full Text PDF

Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHe) is the most universal and practical.

View Article and Find Full Text PDF

Self-assembled cholesterol-asplatin-incorporated nanoparticles (SCANs) were prepared for oral delivery of a Pt(IV) prodrug. SCANs exhibit high gastrointestinal stability, sustained drug release and enhanced cell uptake. The oral bioavailability of SCANs was 4.

View Article and Find Full Text PDF

Combination treatment through simultaneous delivery of two or more drugs with nanoparticles has been demonstrated to be an elegant and efficient approach for cancer therapy. Herein, we employ a combination therapy for eliminating both the bulk tumor cells and the rare cancer stem cells (CSCs) that have a high self-renewal capacity and play a critical role in cancer treatment failure. All-trans-retinoic acid (ATRA), a powerful differentiation agent of cancer stem cells and the clinically widely used chemotherapy agent doxorubicin (DOX) are simultaneously encapsulated in the same nanoparticle by a single emulsion method.

View Article and Find Full Text PDF