Publications by authors named "Zhisong Xiao"

The quantum conductance (QC) behaviors in synaptic devices with stable and tunable conductance states are essential for high-density storage and brain-like neurocomputing (NC). In this work, inspired by the discontinuous transport of fluid in spider silk, a synaptic device composed of a silicon oxide nanowire network embedded with silicon quantum dots (Si-QDs@SiO) is designed. The tunable QC behaviors are achieved in both the SET and RESET processes, and the QC states exhibit stable retention time exceeding 10 s in the synaptic device and show stable reproducibility after an interval of two months.

View Article and Find Full Text PDF

An exceptional surface (ES) has advantages in improving sensing robustness and enhancing frequency splitting. Typically, the eigenvalue splitting must exceed the mode linewidth in order to be clearly visible in the spectrum, which limits the precision of the ES-based sensing structure. In this paper, a strategy for manipulating spectral line shape in an ES-based structure is experimentally realized.

View Article and Find Full Text PDF

Oxide-based memristors composed of Ag/porous SiO/Si stacks are fabricated using different etching time durations between 0 and 90 s, and the memristive properties are analyzed in the relative humidity (RH) range of 30-60%. The combination of humidity and porous structure provides binding sites to control silver filament formation with a confined nanoscale channel. The memristive properties of devices show high on/off ratios up to 10 and a dispersion coefficient of 0.

View Article and Find Full Text PDF

This study proposes a high-performance magnetic shielding structure composed of MnZn ferrite and mu-metal film. The use of the mu-metal film with a high magnetic permeability restrains the decrease in the magnetic shielding coefficient caused by the magnetic leakage between the gap of magnetic annuli. The 0.

View Article and Find Full Text PDF

The transfer characteristics and switching mechanism of the steep-slope transistor composed of the graphene/Janus MoSSe heterostructure are investigated by quantum transport calculation. The Schottky barrier height at the Gr/SMoSe interface and tunneling width between the channel and drain can be tuned by the gate voltage, so that the device exhibits ambipolar switching with two minima in the subthreshold swing slope. 34 and 29 mV decadesubthreshold swings can be achieved and the on/off ratios are over 10and 10for the different switching mechanisms.

View Article and Find Full Text PDF

The magnetic field gradient within optical pumping magnetometers (OPMs) suppresses sensitivity improvement. We investigated the effects of the magnetic field gradient along the x-, y-, and z-axes on the limiting factors of magnetometers under extremely low magnetic field conditions. We modified the magnetic field gradient relaxation model such that it can be applied to atoms in the spin exchange relaxation free (SERF) regime.

View Article and Find Full Text PDF

The Goos-Hänchen (GH) shifts of light beams reflected from conventional passive optical systems could be enhanced using the Brewster angle effect or resonance effect, but the maximum GH shift is located at the reflectance minima, which is difficult for experimental detection. In this paper, we present an efficient and flexible scheme to realize complex parity-time (PT)-symmetric periodic optical potentials (complex crystals) in helium atomic vapor. The GH shifts of probe light reflected from the complex crystal are theoretically investigated and large GH shifts could be obtained inside the high-reflection band.

View Article and Find Full Text PDF

Flexible optoelectronic synaptic devices that functionally imitate the neural behavior with tunable optoelectronic characteristics are crucial to the development of advanced bioinspired neural networks. In this work, amorphous oxide-decorated GaN nanowire arrays (GaO@GaN NWAs) are prepared on flexible graphite paper. A GaO@GaN NWA-based flexible device has tunable persistent photoconductivity (PPC) and shows a conversible fast/slow decay process (SDP).

View Article and Find Full Text PDF

Herein, we reported a simple microwave-assisted method for synthesizing uniform CsPbBr and CsPbBr perovskite nanocrystals (PeNCs). The phase structure, photoluminescence (PL) emission, and quantum yield (QY) of CsPbBr PeNCs can be tuned by changing the radiation time and power of the microwave. The optimized CsPbBr PeNCs showed a high PLQY of up to 87%.

View Article and Find Full Text PDF

Ultra-sensitive multi-channel optically pumped atomic magnetometers based on the spin-exchange relaxation-free (SERF) effect are powerful tools for applications in the field of magnetic imaging. To simultaneously achieve ultra-high spatial resolution and ultra-high magnetic field sensitivity, we proposed a high-resolution multi-channel SERF atomic magnetometer for two-dimensional magnetic field measurements based on a digital micro-mirror device (DMD) as the spatial light modulator for a single vapor cell. Under the optimal experimental conditions obtained via spatial and temporal modulation of the probe light, we first demonstrated that the average sensitivity of the proposed 25-channel magnetometer was approximately 25fT/Hz with a spatial resolution of 216µm.

View Article and Find Full Text PDF

A promising BP/SnSe van der Waals (vdW) photovoltaic heterostructure was designed and investigated by first-principles calculations. The BP/SnSe vdW heterostructure showed inhibition of photogenerated carrier recombination as well as broad and high optical absorption intensity spanning the visible to deep ultraviolet regions reaching the order of 105 cm-1. The carrier mobility of the BP/SnSe vdW heterostructure exhibited anisotropic characteristics reaching approximately 103 cm2 V-1 s-1, with an intrinsic power conversion efficiency (PCE) of 11.

View Article and Find Full Text PDF

Developing high-efficiency, cost-effective, and durable electrodes is significant for electrochemical capacitors and electrocatalysis. Herein, a 3D bifunctional electrode consisting of nickel hydroxide nanosheets@nickel sulfide nanocubes arrays on Ni foam (Ni(OH) @Ni S /NF) obtained from a Prussian blue analogue-based precursor is reported. The 3D higher-order porous structure and synergistic effect of different compositions endow the electrode with large specific surface area, facile ion/electron transport path, and improved conductivity.

View Article and Find Full Text PDF

A memristor architecture based on porous oxide materials has the potential to be used in artificial synaptic devices. Herein, we present a memristor system employing a karst-like hierarchically porous (KLHP) silicon oxide structure with good stability and repeatability. The KLHP structure prepared by an electrochemical process and thermal oxidation exhibits high ON-OFF ratios up to 10 during the endurance test, and the data can be maintained for 10 s at a small read voltage 0.

View Article and Find Full Text PDF

Pt/LiCoO/SiO/Si stacks with different SiO thicknesses are fabricated and the influence of SiO on memristive behavior is investigated. It is demonstrated that SiO can serve as Li ion trapping layer benefiting device retention, and the thickness of SiO must be controlled to avoid large SET voltage and state instability. Simulation model based on Nernst potential and diffusion potential is postulated for electromotive force in LiCoO based memristors.

View Article and Find Full Text PDF

The structural and electronic properties of the black phosphorus/phosphorus pentoxide (BP/P4O10) van der Waals (vdW) heterostructure are investigated theoretically by first-principles calculations. The BP/P4O10 vdW heterostructure is a direct bandgap semiconductor with intrinsic type-II band alignment thus facilitating separation of photoexcited charge carriers. A transition from semiconducting to metallic is predicted under a positive electric field and the transition of type-II to type-I band alignment occurs under a negative electric field in the BP/P4O10 vdW heterostructure.

View Article and Find Full Text PDF

Rigorous expressions of resonant frequency shift (RFS) in anomalous dispersion enhanced resonant optical gyroscopes (ADEROGs) are deduced without making approximation, which provides a precise theoretical guidance to achieve ultra-sensitive ADEROGs. A refractive index related modification factor is introduced when considering special theory of relativity (STR). We demonstrate that the RFS will not be "infinitely large" by using critical anomalous dispersion (CAD) and negative modification does not exist, which make the mechanism of anomalous dispersion enhancement clear and coherent.

View Article and Find Full Text PDF

An improving structure for resonance optical gyro inserting a Mach-Zehnder Interferomete (MZI) into coupler region between ring resonator and straight waveguide was proposed. The different reference phase shift parameters in the MZI arms are tunable by thermo-optic effect and can be optimized at every rotation angular rate point without additional phase bias. Four optimum paths are formed to make the gyroscope to work always at the highest sensitivity.

View Article and Find Full Text PDF

Objective: To explore the possibility of injury to the striated urethral sphincter by incision to the anterior lobe region in transurethral prostatectomy.

Methods: We incised the anterior lobe region of 60 patients with benign prostatic hyperplasia (BPH) undergoing transurethral prostatectomy. The patients were divided into four groups according to the incision fields: proximate superficial (group 1), proximate deep (group 2), distal superficial (group 3) and distal deep (group 4).

View Article and Find Full Text PDF

Photoluminescence properties of the Er(3+)-Dy3+ codoped tellurite glasses were studied by absorption and visible emission spectra, which revealed luminescence bands of both Er3+ and Dy3+ when pumping with the wavelength of 325 nm. The concentration quenching occurred as Dy3+ concentration increased beyond 3 mol%. The dependence of Er3+ characteristic emission on Dy3+ concentration indicated energy transfer process between Er3+ and Dy3+.

View Article and Find Full Text PDF

We report the infrared emissions of Er(3+)-Tm3+ co-doped amorphous Al2O3 thin films pumped at 791 nm by a Ti:sapphire laser. The as-deposited films were annealed to improve the photoluminescence performance. Three cross relaxation channels among Er(3+)-Tm3+ and Tm(3+)-Tm3+ ions incorporated in the films were investigated as annealing temperature increases especially from 800 to 850 degrees C.

View Article and Find Full Text PDF

Nanostructured amorphous Al oxide (a-Al2O3) thin films doped with Tm3+ were synthesized by alternate pulsed laser deposition. The Tm3+ ions have been deposited in layers with in-depth separation ranging from 0.75 to 6 nm.

View Article and Find Full Text PDF

Si and Er ions were implanted into Si-rich thermal oxidation SiO2/Si thin film using metal vapor vacuum arc (MEVVA) ion source implanter, which could produce ion beams with high-fluence and strong-flux. Rutheroford backscattering spectra show that Er concentration in as-implanted sample is attained to 10 at. % corresponding to the level of 10(21) atoms.

View Article and Find Full Text PDF