Publications by authors named "Zhisong Pan"

Deep neural networks (DNNs) are increasingly being used in malware detection and their robustness has been widely discussed. Conventionally, the development of an adversarial example generation scheme for DNNs involves either detailed knowledge concerning the model (., gradient-based methods) or a substantial quantity of data for training a surrogate model.

View Article and Find Full Text PDF

Accurate time series forecasting is of great importance in real-world scenarios such as health care, transportation, and finance. Because of the tendency, temporal variations, and periodicity of the time series data, there are complex and dynamic dependencies among its underlying features. In time series forecasting tasks, the features learned by a specific task at the current time step (such as predicting mortality) are related to the features of historical timesteps and the features of adjacent timesteps of related tasks (such as predicting fever).

View Article and Find Full Text PDF

Multi-view 3D reconstruction technology based on deep learning is developing rapidly. Unsupervised learning has become a research hotspot because it does not need ground truth labels. The current unsupervised method mainly uses 3DCNN to regularize the cost volume to regression image depth.

View Article and Find Full Text PDF

Monocular 3D human pose estimation is used to calculate a 3D human pose from monocular images or videos. It still faces some challenges due to the lack of depth information. Traditional methods have tried to disambiguate it by building a pose dictionary or using temporal information, but these methods are too slow for real-time application.

View Article and Find Full Text PDF

Video compression sensing can use a few measurements to obtain the original video by reconstruction algorithms. There is a natural correlation between video frames, and how to exploit this feature becomes the key to improving the reconstruction quality. More and more deep learning-based video compression sensing (VCS) methods are proposed.

View Article and Find Full Text PDF

Current distillation methods only distill between corresponding layers, and do not consider the knowledge contained in preceding layers. To solve this problem, we analyzed the guiding effect of the inferior features of a teacher model on the coordinate feature of a student model, and proposed inferior and coordinate distillation for object detectors. The proposed method utilizes the rich information contained in different layers of the teacher model; such that the student model can review the old information and learn the new information, in addition to the dark knowledge in the teacher model.

View Article and Find Full Text PDF

In this paper, we propose a multi-scene adaptive crowd counting method based on meta-knowledge and multi-task learning. In practice, surveillance cameras are stationarily deployed in various scenes. Considering the extensibility of a surveillance system, the ideal crowd counting method should have a strong generalization capability to be deployed in unknown scenes.

View Article and Find Full Text PDF

Large-scale terminals' various QoS requirements are key challenges confronting the resource allocation of Satellite Internet of Things (S-IoT). This paper presents a deep reinforcement learning-based online channel allocation and power control algorithm in an S-IoT uplink scenario. The intelligent agent determines the transmission channel and power simultaneously based on contextual information.

View Article and Find Full Text PDF

Background subtraction is a classic video processing task pervading in numerous visual applications such as video surveillance and traffic monitoring. Given the diversity and variability of real application scenes, an ideal background subtraction model should be robust to various scenarios. Even though deep-learning approaches have demonstrated unprecedented improvements, they often fail to generalize to unseen scenarios, thereby less suitable for extensive deployment.

View Article and Find Full Text PDF

Searching for active modules, i.e., regions showing striking changes in molecular activity in biological networks is important to reveal regulatory and signaling mechanisms of biological systems.

View Article and Find Full Text PDF

The extrapolation strategy raised by Nesterov, which can accelerate the convergence rate of gradient descent methods by orders of magnitude when dealing with smooth convex objective, has led to tremendous success in training machine learning tasks. In this article, the convergence of individual iterates of projected subgradient (PSG) methods for nonsmooth convex optimization problems is theoretically studied based on Nesterov's extrapolation, which we name individual convergence. We prove that Nesterov's extrapolation has the strength to make the individual convergence of PSG optimal for nonsmooth problems.

View Article and Find Full Text PDF

Area Under the ROC Curve (AUC) is a widely used metric for measuring classification performance. It has important theoretical and academic values to develop AUC maximization algorithms. Traditional methods often apply batch learning algorithm to maximize AUC which is inefficient and unscalable for large-scale applications.

View Article and Find Full Text PDF

Many well-known first-order gradient methods have been extended to cope with large-scale composite problems, which often arise as a regularized empirical risk minimization in machine learning. However, their optimal convergence is attained only in terms of the weighted average of past iterative solutions. How to make the individual convergence of stochastic gradient descent (SGD) optimal, especially for strongly convex problems has now become a challenging problem in the machine learning community.

View Article and Find Full Text PDF

Identifying influential nodes is an important topic in many diverse applications, such as accelerating information propagation, controlling rumors and diseases. Many methods have been put forward to identify influential nodes in complex networks, ranging from node centrality to diffusion-based processes. However, most of the previous studies do not take into account overlapping communities in networks.

View Article and Find Full Text PDF

Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction.

View Article and Find Full Text PDF

Community detection is an important tasks across a number of research fields including social science, biology, and physics. In the real world, topology information alone is often inadequate to accurately find out community structure due to its sparsity and noise. The potential useful prior information such as pairwise constraints which contain must-link and cannot-link constraints can be obtained from domain knowledge in many applications.

View Article and Find Full Text PDF

Background: Active modules are connected regions in biological network which show significant changes in expression over particular conditions. The identification of such modules is important since it may reveal the regulatory and signaling mechanisms that associate with a given cellular response.

Results: In this paper, we propose a novel active module identification algorithm based on a memetic algorithm.

View Article and Find Full Text PDF

Domain adaptation has received much attention as a major form of transfer learning. One issue that should be considered in domain adaptation is the gap between source domain and target domain. In order to improve the generalization ability of domain adaption methods, we proposed a framework for domain adaptation combining source and target data, with a new regularizer which takes generalization bounds into account.

View Article and Find Full Text PDF