Cancer Genomics Proteomics
January 2017
Background/aim: Esophageal cancer (EC) is a common malignancy with significant morbidity and mortality. As individual cancers exhibit unique mutation patterns, identifying and characterizing gene mutations in EC that may serve as biomarkers might help predict patient outcome and guide treatment. Traditionally, personalized cancer DNA sequencing was impractical and expensive.
View Article and Find Full Text PDFLung cancer remains the most prevalent malignancy and the primary cause of cancer-related deaths worldwide. Unique mutations patterns can be found in lung cancer subtypes, in individual cancers, or within a single tumor, and drugs that target these genetic mutations and signal transduction pathways are often beneficial to patients. In this study, we used the Ion Torrent AmpliSeq Cancer Panel to sequence 737 loci from 45 cancer-related genes and oncogenes to identify genetic mutations in 48 formalin-fixed, paraffin-embedded (FFPE) human lung cancer samples from Chinese patients.
View Article and Find Full Text PDFColorectal cancer (CRC) is widespread with significant mortality. Both inherited and sporadic mutations in various signaling pathways influence the development and progression of the cancer. Identifying genetic mutations in CRC is important for optimal patient treatment and many approaches currently exist to uncover these mutations, including next-generation sequencing (NGS) and commercially available kits.
View Article and Find Full Text PDFBreast cancer is the most common malignancy in women and the leading cause of cancer deaths in women worldwide. Breast cancers are heterogenous and exist in many different subtypes (luminal A, luminal B, triple negative, and human epidermal growth factor receptor 2 (HER2) overexpressing), and each subtype displays distinct characteristics, responses to treatment, and patient outcomes. In addition to varying immunohistochemical properties, each subtype contains a distinct gene mutation profile which has yet to be fully defined.
View Article and Find Full Text PDFIdentifying gene mutations in individual tumors is critical to improve the efficacy of cancer therapy by matching targeted drugs to specific mutations. Gastrointestinal stromal tumors (GIST) are stromal or mesenchymal subepithelial neoplasms affecting the gastrointestinal tract and frequently contain activating gene mutations in either KIT or platelet-derived growth factor A (PDGFRA). Although GIST is highly responsive to several selective tyrosine kinase inhibitors, combined use of inhibitors targeting other mutations is needed to further prolong survival in patients with GIST.
View Article and Find Full Text PDFGastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies.
View Article and Find Full Text PDFBreast cancer is the most common malignancy and the leading cause of cancer deaths in women worldwide. While specific genetic mutations have been linked to 5-10% of breast cancer cases, other environmental and epigenetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive breast cancer molecular profile is needed to develop more effective target therapies.
View Article and Find Full Text PDFLung cancer is the most common malignancy and the leading cause of cancer deaths worldwide. While smoking is by far the leading cause of lung cancer, other environmental and genetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive lung cancer molecular profile is essential for developing more effective, tailored therapies.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2012
HAb18G/CD147 is a transmembrane glycoprotein of the immunoglobulin superfamily (IgSF) and is reported to be correlated with invasion and metastasis of many cancers. The crystal structure of HAb18G/CD147 ectodomain has shown that it can form homodimers in crystal. However, the functional significance of HAb18G/CD147 dimerization remains unclear.
View Article and Find Full Text PDF