Publications by authors named "Zhisheng Lv"

Phase change materials (PCMs) are crucial for sustainable thermal management in energy-efficient construction and cold chain logistics, as they can store and release renewable thermal energy. However, traditional PCMs suffer from leakage and a loss of formability above their phase change temperatures, limiting their shape stability and versatility. Inspired by the muscle structure, formable PCMs with a hierarchical structure and solvent-responsive supramolecular networks based on polyvinyl alcohol (PVA)/wood composites are developed.

View Article and Find Full Text PDF

A two-axis stabilizing gimbal is a device that ensures a sensor is working properly on a moving platform. When classical mechanics (Newton-Euler and Lagrange) is employed to model a two-axis stable gimbal, its limitations can complicate the modeling process. To address this issue, a method for establishing a dynamic model for a two-axis stabilizing platform based on the Kane method is proposed in this paper.

View Article and Find Full Text PDF

Active sensing is a fundamental aspect of human and animal interactions with the environment, providing essential information about the hardness, texture, and tackiness of objects. This ability stems from the presence of diverse mechanoreceptors in the skin, capable of detecting a wide range of stimuli and from the sensorimotor control of biological mechanisms. In contrast, existing tactile sensors for robotic applications typically excel in identifying only limited types of information, lacking the versatility of biological mechanoreceptors and the requisite sensing strategies to extract tactile information proactively.

View Article and Find Full Text PDF

Severe capacity decay under subzero temperatures remains a significant challenge for lithium-ion batteries (LIBs) due to the sluggish interfacial kinetics. Current efforts to mitigate this deteriorating interfacial behavior rely on high-solubility lithium salts (e.g.

View Article and Find Full Text PDF

Thermal safety issues of batteries have hindered their large-scale applications. Nonflammable electrolytes improved safety but solvent evaporation above 100 °C limited thermal tolerance, lacking reliability. Herein, fire-tolerant metal-air batteries were realized by introducing solute-in-air electrolytes whose hygroscopic solutes could spontaneously reabsorb the evaporated water solvent.

View Article and Find Full Text PDF

An initial Coulombic efficiency (ICE) higher than 90% is crucial for industrial lithium-ion batteries, but numerous electrode materials are not standards compliant. Lithium trapping, due to i) incomplete solid-state reaction of Li generation and ii) sluggish Li diffusion, undermines ICE in high-capacity electrodes (e.g.

View Article and Find Full Text PDF

Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited.

View Article and Find Full Text PDF

Three-dimensional (3D) architectures have qualitatively expanded the functions of materials and flexible electronics. However, current fabrication techniques for devices constrain their substrates to 2D geometries and current post-shape transformation strategies are limited to heterogenous or responsive materials and are not amenable to free-standing inert plastic films such as polyethylene terephthalate (PET) and polyimide (PI), which are vital substrates for flexible electronics. Here, we realize the shape morphing of homogeneous plastic films for various free-standing 3D frameworks from their 2D precursors by introducing a general strategy based on programming the plastic strain in films under peeling.

View Article and Find Full Text PDF

Flexible lithium-ion batteries (LIBs) with high energy density are highly desirable for wearable electronics. However, difficult to achieve excellent flexibility and high energy density simultaneously via the current approaches for designing flexible LIBs. To mitigate the mismatch, mechano-graded electrodes with gradient-distributed maximum allowable strain are proposed to endow high-loading-mass slurry-coating electrodes with brilliant intrinsic flexibility without sacrificing energy density.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) with well-defined porous structures and tailored functionalities have been widely used in chemical sensing. However, the integration of MOFs with flexible electronic devices for wearable sensing is challenging because of their low electrical conductivity and fragile mechanical properties. Herein, a wearable sweat sensor for metabolite detection is presented by integrating an electrically conductive Ni-MOF with a flexible nanocellulose substrate.

View Article and Find Full Text PDF

Tactile technologies that can identify human body features are valuable in clinical diagnosis and human-machine interactions. Previously, cutting-edge tactile platforms have been able to identify structured non-living objects; however, identification of human body features remains challenging mainly because of the irregular contour and heterogeneous spatial distribution of softness. Here, freestanding and scalable tactile platforms of force-softness bimodal sensor arrays are developed, enabling tactile gloves to identify body features using machine-learning methods.

View Article and Find Full Text PDF

Flexible electrodes that are multilayer, multimaterial, and conformal are pivotal for multifunctional wearable electronics. Traditional electronic circuits manufacturing requires substrate-supported transfer printing, which limits their multilayer integrity and device conformability on arbitrary surfaces. Herein, a "shrinkage-assisted patterning by evaporation" (SHAPE) method is reported, by employing evaporation-induced interfacial strain mismatch, to fabricate auto-detachable, freestanding, and patternable electrodes.

View Article and Find Full Text PDF

Layered ternary oxides LiNi Mn Co O are promising cathode candidates for high-energy lithium-ion batteries (LIBs), but they usually suffer from the severe interfacial parasitic reactions at voltages above 4.3 V versus Li /Li, which greatly limit their practical capacities. Herein, using LiNi Mn Co O (NMC111) as the model system, a novel high-temperature pre-cycling strategy is proposed to realize its stable cycling in 3.

View Article and Find Full Text PDF

High-temperature-induced fire is an extremely serious safety risk in energy storage devices; which can be avoided by replacing their components with nonflammable materials. However; these devices are still destroyed by the high-temperature decomposition; lacking reliability. Here, a fire-tolerant supercapacitor is further demonstrated that recovers after burning with a self-healable "solute-in-air" electrolyte.

View Article and Find Full Text PDF

Stretchable electronics incorporating critical sensing, data transmission, display and powering functionalities, is crucial to emerging wearable healthcare applications. To date, methods to achieve stretchability of individual functional devices have been extensively investigated. However, integration strategies of these stretchable devices to achieve all-stretchable systems are still under exploration, in which the reliable stretchable interconnection is a key element.

View Article and Find Full Text PDF

Ion adsorption inside electrified carbon micropores is pivotal for the operation of supercapacitors. Depending on the electrolyte, two main mechanisms have been identified so far, the desolvation of ions in solvents and the formation of superionic states in ionic liquids. Here, it is shown that upon confinement inside negatively charged micropores, transition-metal cations dissolved in water associate to form oligomer species.

View Article and Find Full Text PDF

Microwave-invisible devices are emerging as a valuable technology in various applications, including soft robotics, shape-morphing structures, and textural camouflages, especially in electronic countermeasures. Unfortunately, conventional microwave-absorbing metastructures and bulk absorbers are stretching confined, limiting their application in deformable or special-shaped targets. To overcome such limitations, a conceptually novel soft-rigid-connection strategy, inspired by the pangolin, is proposed.

View Article and Find Full Text PDF

Human behaviors are extremely sophisticated, relying on the adaptive, plastic and event-driven network of sensory neurons. Such neuronal system analyzes multiple sensory cues efficiently to establish accurate depiction of the environment. Here, we develop a bimodal artificial sensory neuron to implement the sensory fusion processes.

View Article and Find Full Text PDF

Silicon anode with extremely high theoretical specific capacity (≈4200 mAh g ), experiences huge volume changes during Li-ion insertion and extraction, causing mechanical fracture of Si particles and the growth of a solid-electrolyte interface (SEI), which results in a rapid capacity fading of Si electrodes. Herein, a mechanically reinforced localized structure is designed for carbon-coated Si nanoparticles (C@Si) via elongated TiO nanotubes networks toward stabilizing Si electrode via alleviating mechanical strain and stabilizing the SEI layer. Benefited from the rational localized structure design, the carbon-coated Si nanoparticles/TiO nanotubes composited electrode (C@Si/TiNT) exhibits an ideal electrode thickness swelling, which is lower than 1% after the first cycle and increases to about 6.

View Article and Find Full Text PDF

High-energy Li-rich layered cathode materials (≈900 Wh kg ) suffer from severe capacity and voltage decay during cycling, which is associated with layered-to-spinel phase transition and oxygen redox reaction. Current efforts mainly focus on surface modification to suppress this unwanted structural transformation. However, the true challenge probably originates from the continuous oxygen release upon charging.

View Article and Find Full Text PDF

Oxygen vacancies play crucial roles in defining physical and chemical properties of materials to enhance the performances in electronics, solar cells, catalysis, sensors, and energy conversion and storage. Conventional approaches to incorporate oxygen defects mainly rely on reducing the oxygen partial pressure for the removal of product to change the equilibrium position. However, directly affecting reactants to shift the reaction toward generating oxygen vacancies is lacking and to fill this blank in synthetic methodology is very challenging.

View Article and Find Full Text PDF

Sluggish interfacial kinetics leading to considerable loss of energy and power capabilities at subzero temperatures is still a big challenge to overcome for Li-ion batteries operating under extreme environmental conditions. Herein, using LiMnO as the model system, we demonstrated that nickel surface doping to construct a new interface owning lower charge transfer energy barrier, could effectively facilitate the interfacial process and inhibit the capacity loss with decreased temperature. Detailed investigations on the charge transfer process via electrochemical impedance spectroscopy and density functional theory calculation, indicate that the interfacial chemistry tuning could effectively lower the activation energy of charge transfer process by nearly 20%, endowing the cells with ∼75.

View Article and Find Full Text PDF

MoS holds great promise as high-rate electrode for lithium-ion batteries since its large interlayer can allow fast lithium diffusion in 3.0-1.0 V.

View Article and Find Full Text PDF

Traditional stretchable supercapacitors, possessing a thin electrode and a 2D shape, have limited areal specific areal capacitance and are incompatible with 3D wearables. To overcome the limitations of 2D stretchable supercapacitors, it is highly desirable to develop 3D stretchable supercapacitors with higher mass loading and customizable shapes. In this work, a new 3D stretchable supercapacitor inspired by a honeycomb lantern based on an expandable honeycomb composite electrode composed of polypyrrole/black-phosphorous oxide electrodeposited on carbon nanotube film is reported.

View Article and Find Full Text PDF

Fundamental insight into the surface charging mechanism of TiO (B) nanomaterials is limited due to the complicated nature of lithiation behavior, as well as the limitations of available characterization tools that can directly probe surface charging process. Here, an in situ approach is reported to monitor the dynamic valence state of TiO (B) nanotube electrodes, which utilizes in situ X-ray absorption spectroscopy (XAS) to identify the origin and contribution of surface storage. A real-time correlation is elucidated between the rate-dependent electrode performance and dynamic Ti valence-state change.

View Article and Find Full Text PDF