Aramid fiber reinforced composites (AFRCs) have received increasing attention because of their excellent comprehensive performance including high mechanical strength, high modulus, and light weight. However, full recycling of AFs from ARCFs is difficult to achieve. Herein, fully recyclable ARCFs are fabricated using reversible cross-linked polyurea plastics (PUHA) as the matrix.
View Article and Find Full Text PDFThe development of degradable polymeric materials such as degradable polyurethane or polyurea has been much highlighted for resource conservation and environmental protection. Herein, a facile strategy of constructing mechanically strong and tough poly(urea-urethane) (PUU) thermosets that can be degraded under mild conditions by using triple boron-urethane bonds (TBUB) as cross-linkers is demonstrated. By tailoring the molecular weight of the soft segment of the prepolymers, the mechanical performance can be finely controlled.
View Article and Find Full Text PDFInflammation-associated thrombosis is a non-negligible source of mortalities and morbidities worldwide. To manipulate inflammation-associated coagulation, nanoparticles that contain anti-inflammatory polymer (copolyoxalate containing vanillyl alcohol, PVAX) and anti-thrombotic heparin derivative deoxycholic acid (Hep-DOCA) are prepared. The strategy takes advantage of the reducted side effects of heparin through heparin conjugation, achievement of long-term anti-inflammation by inflammation-trigged release of anti-inflammatory agents, and formation of PVAX/heparin-DOCA nanoparticles by co-self-assembly.
View Article and Find Full Text PDFWe have developed a 3D smart binary polymer-brush pattern on the polymer substrate for inducing multiple cell microarrays aided by a lectin and temperature. The binary polymer-brush pattern composed of poly(N-isopropylacrylamide) (PNIPAM) and poly(d-gluconamidoethyl methacrylate) (PGAMA) brushes is fabricated by combining the photolithography technique with a surface-initiated photo-polymerization (SIPP) method. We demonstrate that well-defined binary polymer-brush patterns with high resolution are fabricated using this facile method.
View Article and Find Full Text PDFA series of tertiary amine-based hyperbranched poly(amine-ester)s have been synthesized by Michael addition polymerization of trifunctional monomer, TMEA and difunctional monomer, diacylates in chloroform, and the resultant polymers were subsequently treated with mercaptoethenol or 1-dodecanethiol for improving stability in storage. The caption efficiency of mercaptoethanol is much better than that of 1-dodecanthiol. Kinetic study reveals that the thiol group is consumed faster than the acrylate group when the polymerization with feed molar ratio of diacrylate/TMEA = 2/1 was carried out.
View Article and Find Full Text PDFImmunoassays have shown great advances in the fields of biomedical diagnosis. However, successful immunoassays in blood plasma or whole blood based on the designed biointerfaces are still rare. Here, a newly cell-inspired biointerface for immunoassays in blood is demonstrated.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2017
Bacterial infections are problematic in many healthcare-associated devices. Antibacterial surfaces integrating the strength of bacteria repellent and bactericidal functions exhibit an encouraging efficacy in tackling this problem. Herein, a hierarchical dual-function antibacterial polymer brush coating that integrates an antifouling bottom layer with a bactericidal top layer is facilely constructed via living photograft polymerization.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2017
Bacterial infections are problematic in many healthcare-associated devices. Antibacterial surfaces integrating the strength of bacteria repellent and bactericidal functions exhibit an encouraging efficacy in tackling this problem. Herein, a hierarchical dual-function antibacterial polymer brush coating that integrates an antifouling bottom layer with a bactericidal top layer is facilely constructed via living photograft polymerization.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
October 2016
The bacteria-repellent and bactericidal functionalities in a single system are generally need to be carefully optimized in order to obtain the highest antibacterial performance. In this study, the controlled SI-PIMP strategy was developed for creating hierarchical polymer brushes possessing the bacteria-repellent and bactericidal functionalities. To obtain a bactericidal surface with minimal interference to its nonfouling property, optimization studies were conducted by facilely tailoring the surface density of the quaternary ammonium compound moieties through control over the monomer concentration.
View Article and Find Full Text PDFA newly glycopolymer-patterned surface for capturing red blood cells (RBCs) is demonstrated. Our strategy is based on the surface-initiated photopolymerization of 2-acryl-amido-2-methylpropane sulfonic acid (AMPS) on a thermoplastic elastomer, the patterning of poly(d-gluconamidoethyl methacrylate) (PGAMA, glycopolymer) micro-domains on the PAMPS layer with photomask-assisted photolithography, followed by the generation of a phytohemagglutinin (PHA) array on the patterned surface through lectin-carbohydrate recognition. We demonstrate that the bi-component polymer-patterned surface with high lateral resolution is successfully fabricated; the PAMPS layer with patterned glycopolymer domains remains hydrophilic to resist non-specific plasma protein adsorption and cell adhesion; the PHA array on the patterned PGAMA domains induces nearly no platelet adhesion on the patterned surface, but shows high capability for capturing RBCs in the blood, and in addition, the captured RBCs maintain cellular integrity and function.
View Article and Find Full Text PDFGemini surfactants (GS) with sugar-containing head-groups and different alkyl chains were successfully prepared. Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) elastomer was grafted with glycidyl methacrylate (GMA) by means of UV-induced graft polymerization, and then the pGMA-grafted film was chemically immobilized with the GS. The surface graft polymerization was confirmed by ATR-FTIR and XPS.
View Article and Find Full Text PDF