Moiré quantum materials host exotic electronic phenomena through enhanced internal Coulomb interactions in twisted two-dimensional heterostructures. When combined with the exceptionally high electrostatic control in atomically thin materials, moiré heterostructures have the potential to enable next-generation electronic devices with unprecedented functionality. However, despite extensive exploration, moiré electronic phenomena have thus far been limited to impractically low cryogenic temperatures, thus precluding real-world applications of moiré quantum materials.
View Article and Find Full Text PDFRecent decades have witnessed the rapid progress of nanozymes and their high promising applications in catalysis and bioclinics. However, the comprehensive synthetic procedures and harsh synthetic conditions represent significant challenges for nanozymes. In this study, monodisperse, ultrasmall gold clusters with peroxidase-like activity were prepared via a simple and robust one-pot method.
View Article and Find Full Text PDFThe constituent particles of matter can arrange themselves in various ways, giving rise to emergent phenomena that can be surprisingly rich and often cannot be understood by studying only the individual constituents. Discovering and understanding the emergence of such phenomena in quantum materials-especially those in which multiple degrees of freedom or energy scales are delicately balanced-is of fundamental interest to condensed-matter research. Here we report on the surprising observation of emergent ferroelectricity in graphene-based moiré heterostructures.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFMoiré engineering is being intensively investigated as a method to tune the electronic, magnetic and optical properties of twisted van der Waals materials. Advances in moiré engineering stem from the formation of peculiar moiré superlattices at small, specific twist angles. Here we report configurable nanoscale light-matter waves-phonon polaritons-by twisting stacked α-phase molybdenum trioxide (α-MoO) slabs over a broad range of twist angles from 0° to 90°.
View Article and Find Full Text PDFChange history: In this Letter, the following text has been added to the Acknowledgements section: "the scanning transmission electron microscopy measurements at the Molecular Foundry were supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract number DE-AC02-05CH11231". See accompanying Amendment.
View Article and Find Full Text PDFMoiré superlattices enable the generation of new quantum phenomena in two-dimensional heterostructures, in which the interactions between the atomically thin layers qualitatively change the electronic band structure of the superlattice. For example, mini-Dirac points, tunable Mott insulator states and the Hofstadter butterfly pattern can emerge in different types of graphene/boron nitride moiré superlattices, whereas correlated insulating states and superconductivity have been reported in twisted bilayer graphene moiré superlattices. In addition to their pronounced effects on single-particle states, moiré superlattices have recently been predicted to host excited states such as moiré exciton bands.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
August 2013
Raman spectra of two typical carotenoids (beta-carotene and lutein) and some short (n = 2-5) polyenes were calculated using density functional theory. The wavenumber-linear scaling (WLS) and other frequency scaling methods were used to calibrate the calculated frequencies. It was found that the most commonly used uniform scaling (UFS) method can only calibrate several individual frequencies perfectly, and the systematic result of this method is not very good.
View Article and Find Full Text PDFBased on repetition frequency-dependent excited state absorption (ESA) upconversion (UC) luminescence, a method to measure the lifetime of an IR intermediate level is proposed so long as ESA UC luminescence can occur in the rare earth ions. The feasibility of this idea is demonstrated via a theoretical simulation. A Er(3+):LiNbO₃ crystal ESA UC luminescence under femtosecond laser excitation is used to illustrate this measurement method, and the obtained 1.
View Article and Find Full Text PDFEnergy transfer (ET) processes between quantum dots (QDS) were investigated by means of steady-state and time-resolved up-conversion luminescence measurements. Two types of CdSeS QDs with different Se/S molar ratios at the similar sizes of ~4.5 nm emit green and orange up-conversion luminescence at infrared laser excitation, separately.
View Article and Find Full Text PDFThe Raman spectra of all-trans-lycopene in n-hexane were measured under high pressure, and the results compared with those of β-carotene. The different pressure effects on Raman spectra are analyzed taking into account the different structures of lycopene and β-carotene molecules. It is concluded that: (a) the vibronic coupling between the S₁ and S₀ states of β-carotene is stronger than that of lycopene, (b) the diabatic frequency increment of the ν₁ mode is more susceptible to pressure than that of the ν₂ mode for lycopene, and (c) β-rings rotation can relieve the pressure effect on the C=C bond length in β-carotene.
View Article and Find Full Text PDFRed upconversion (UC) emission at 626 nm is obtained from a LiNbO(3) crystal codoped with Er(3+) and Eu(3+) under 800 nm femtosecond laser excitation. Energy transfer from ((2)H(11/2,),(4) S(3/2)) levels of Er(3+), which are excited by excited state absorption, to (5)D(1) of Eu(3+) followed by rapidly relaxing to (5)D(0) nonradiatively leads to this red UC emission. The energy transfer efficiency and Er-Eu transfer microparameter of approximately 30% is obtained in LiNbO(3):Er(3+)(1.
View Article and Find Full Text PDFThe effect of beta-ring rotation on the structures and vibrational spectroscopic characteristics of beta-carotene, including infrared (IR) intensities and Raman activities, is analyzed using density functional theory. Two stable isomers having Ci symmetry are obtained. The reversion of bond lengths is ascribed to the hyperconjugation effect.
View Article and Find Full Text PDFEr(3+) green upconversion (UC) emission corresponding to the transition of (4)S(3/2) ((2)H(11/2))-->(4)I(15/2) is enhanced in a Er/Dy-codoped LiNbO(3) crystal compared with Er-doped LiNbO(3) under 800 nm femtosecond-laser excitation at room temperature. The upconversion mechanisms are proposed based on spectral, kinetic, and pump-power dependence analyses. The energy-transfer efficiency from Dy(3+)((4)F(9/2)) to Er(3+)((4)F(7/2)) is 33%, which results in the enhancement of green UC emission.
View Article and Find Full Text PDFThe ground state Raman spectra of all-trans-beta-carotene in n-hexane and CS2 solutions are measured by simultaneously changing the solvent environment and molecular structure under high hydrostatic pressure. The diverse pressure dependencies of several representative Raman bands are explained using a competitive mechanism involving bond length changes and vibronic coupling. It is therefore concluded that (a) the in-phase C=C stretching mode plays an essential role in the conversion of energy from S1 to S0 states in carotenoids, (b) internal conversion and intramolecular vibrational redistribution can be accelerated by high pressure, and (c) the environmental effect, but not the structural distortion or pi-electron delocalization, is responsible for the spectral properties of a given carotenoid species.
View Article and Find Full Text PDF