Cryopreservation is the most effective technology for the long-term preservation of biological materials, including cells, tissues, and even organs in the future. The process of cooling and rewarming is essential to the successful preservation of biological materials. One of the critical problems in the development of cryopreservation is the optimization of effective rewarming technologies.
View Article and Find Full Text PDFRapid and uniform rewarming has been proved to be beneficial, and sometimes indispensable for the survival of cryopreserved biomaterials, inhibiting ice-recrystallization-devitrification and thermal stress-induced fracture (especially in large samples). To date, the convective water bath remains the gold standard rewarming method for small samples in the clinical settings, but it failed in the large samples (e.g.
View Article and Find Full Text PDFRapid and accurate clinical assessment of hemostasis is essential for managing patients who undergo invasive procedures, experience hemorrhages, or receive antithrombotic therapies. Hemostasis encompasses an ensemble of interactions between the cellular and non-cellular blood components, but current devices assess only partial aspects of this complex process. In this work, we describe the development of a new approach to simultaneously evaluate coagulation function, platelet count or function, and hematocrit using a carbon nanotube-paper composite (CPC) capacitance sensor.
View Article and Find Full Text PDFInt J Environ Res Public Health
June 2021
To assess the effectiveness of the containment strategies proposed in Japan, an SEIAQR (susceptible-exposed-infected-asymptomatic-quarantined-recovered) model was established to simulate the transmission of COVID-19. We divided the spread of COVID-19 in Japan into different stages based on policies. The effective reproduction number Re and the transmission parameters were determined to evaluate the measures conducted by the Japanese Government during these periods.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2. During the past 10 months, COVID-19 has killed over 1 million people worldwide. Under this global crisis, data sharing and management of the COVID-19 information are urgently needed and critical for researchers, epidemiologists, physicians, bioengineers, funding agencies, and governments to work together in developing new vaccines, drugs, methods, therapeutics, and strategies for the prevention and treatment of this deadly and rapidly spreading disease.
View Article and Find Full Text PDFBiobanking has been playing a crucial role in the development of new vaccines, drugs, biotechnology, and therapeutics for the prevention and treatment of a wide range of human diseases. This puts biobanks at the forefront of responding to the ongoing worldwide outbreak of the severe pandemic, coronavirus disease 2019 (COVID-19). The leading public health institutions around the world have developed and established interim policies and guidelines for researchers and biobank staff to handle the infectious biospecimens safely and adequately from COVID-19 patients.
View Article and Find Full Text PDFMicromachines (Basel)
November 2019
The Jurkat cell is an immortalized line of human acute lymphocyte leukemia cells that is widely used in the study of adoptive cell therapy, a novel treatment of several advanced forms of cancer. The ability to transport water and solutes across the cell membrane under different temperatures is an important factor for deciding the specific protocol for cryopreservation of the Jurkat cell. In this study we propose a comprehensive process for determination of membrane transport properties of Jurkat cell.
View Article and Find Full Text PDFHistone phosphorylation, an epigenetic post-translational modification, plays essential roles in male gamete chromatin compaction during spermatogenesis and sperm maturity. Previously, we studied the epigenetic marker of phosphorylated serine 1 of histone H2A and H4 (HS1ph) during spermatogenesis in mice and crabs, which was shown to be closely related to the sperm maturity. To further investigate the correlation between phosphorylated serine 1 of histone H4 (H4S1ph) and sperm maturation, a comparison study was conducted in this work between the healthy and the precocious crabs.
View Article and Find Full Text PDFThe lack of an effective rewarming technique restricted the successful cryopreservation of organ or large tissues by vitrification. The conversion of electromagnetic (EM) energy into heat provides a possible solution for the rewarming process for the cryopreservation. In this work, an EM resonance rewarming system was set up with dynamic feedback control and power feeding optimization.
View Article and Find Full Text PDFBackground: Cryopreservation of leukocytes isolated from the cervicovaginal and colorectal mucosa is useful for the study of cellular immunity (see Hughes SM et al. PLOS ONE 2016). However, some questions about mucosal biology and sexually transmitted infections are better addressed with intact mucosal tissue, for which there is no standard cryopreservation protocol.
View Article and Find Full Text PDFIn the rewarming process during cryopreservation, preventing ice recrystallization and thermal stress is important, especially for large tissues and organs. Uniform and rapid heating is essential in ameliorating the problem and maintaining the viability of cryopreserved biological samples. Currently, the most promising method is heating by application of electromagnetic (EM) waves, the effectiveness of which is dependent on the dielectric properties (DP) of the cryopreserved materials.
View Article and Find Full Text PDFWe developed an integrated microfluidic platform for instantaneous flow and localized temperature control. The platform consisted of a flow-focusing region for sample delivery and a cross-junction region embedded with a microheater for cell trapping and localized temperature control by using an active feedback control system. We further used it to measure the membrane transport properties of Jurkat cells, including the osmotically inactive cell volume (V) and cell membrane permeabilities to water (L) and to cryoprotective agent (CPA) solutions (dimethyl sulfoxide (DMSO) in this study) (P) at various temperatures (room temperature, 30 °C, and 37 °C).
View Article and Find Full Text PDFQuantitative evaluation of the inherent correlation between cell cryoinjuries and intracellular ice formation (IIF) together with recrystallization (IIR) is of primary importance for both optimization of biopreservation and cryotherapy. The objective of this study is to thoroughly explore the roles of IIF on cell viability by using pig iliac endothelium cells (PIECs) as model cells during freezing and thawing. The experimental results indicated that both the probabilities of IIF (PIF) and IIR (PIR) increased along with the increase of cooling rates (p < 0.
View Article and Find Full Text PDFBackground: The measurement of hydraulic conductivity of the cell membrane is very important for optimizing the protocol of cryopreservation and cryosurgery. There are two different methods using differential scanning calorimetry (DSC) to measure the freezing response of cells and tissues. Devireddy et al.
View Article and Find Full Text PDFBackground: Understanding how leukocytes in the cervicovaginal and colorectal mucosae respond to pathogens, and how medical interventions affect these responses, is important for developing better tools to prevent HIV and other sexually transmitted infections. An effective cryopreservation protocol for these cells following their isolation will make studying them more feasible.
Methods And Findings: To find an optimal cryopreservation protocol for mucosal mononuclear leukocytes, we compared cryopreservation media and procedures using human vaginal leukocytes and confirmed our results with endocervical and colorectal leukocytes.
To study mucosal immunity and conduct HIV vaccine trials, it is important to be able to cryopreserve mucosal specimens and recover them in functional viable form. Obtaining a good recovery depends, in part, on cooling the cells at the appropriate rate, which is determined by the rate of water transport across the cell membrane during the cooling process. In this study, the cell membrane permeabilities to water at subzero temperatures of human vaginal mucosal T cells and macrophages were measured using the differential scanning calorimetry method proposed by Devireddy et al.
View Article and Find Full Text PDFCryopreservation of specimens taken from the genital tract of women is important for studying mucosal immunity during HIV prevention trials. However, it is unclear whether the current, empirically developed cryopreservation procedures for peripheral blood cells are also ideal for genital specimens. The optimal cryopreservation protocol depends on the cryobiological features of the cells.
View Article and Find Full Text PDFIt was recently reported that nanoparticles could significantly modulate the thermal properties of solutions at subzero temperatures, and as a result, nanoparticles have been widely used in both cryopreservation and cryosurgery. In cryopreservation, the water permeability coefficient of cell membrane is an essential parameter for quantitative investigation of cell dehydration and intracellular ice formation. However, few studies were focused on the effects of nanoparticles on the permeability properties of cell membrane.
View Article and Find Full Text PDFIn cryopreservation, the two-parameter (2P) model and the nondilute solution model have been developed to study the membrane transport properties of cells. However, to our knowledge, comparison of the fitting validity has never been made between the two models. In this study, to make this comparison, the permeability parameters of porcine adipose-derived stem cells (pADSCs) were first determined with the two models, and then the errors between the predictions and the experimental data were tested using the Lilliefors test.
View Article and Find Full Text PDFDespite decades of research and clinical studies of islet transplantations, finding simple yet reliable islet quality assays that correlate accurately with in vivo potency is still a major challenge, especially for real-time and single-islet-based quality assessment. Herein, proof-of-concept studies of a cryopreserved microcapsule-based quality control assays are presented for single islets. Individual rat pancreatic islets and fluorescent oxygen-sensitive dye (FOSD) are encapsulated in alginate hydrogel microcapsules via a microfluidic device.
View Article and Find Full Text PDFAn improved thermal-needle approach for accurate and fast measurement of thermal conductivity of aqueous and soft biomaterials was developed using microfabricated thermal conductivity sensors. This microscopic measuring device was comprehensively characterized at temperatures from 0 °C to 40 °C. Despite the previous belief, system calibration constant was observed to be highly temperature-dependent.
View Article and Find Full Text PDFClin Plast Surg
April 2015
This article first discusses some fundamentals of cryobiology and challenges for cell and tissue cryopreservation. Then, the results of cryopreservation of adipose cells and tissues, including adipose-derived stem cells, in the last decade are reviewed. In addition, from the viewpoint of cryobiology, some desired future work in fat cryopreservation is proposed that would benefit the optimization, standardization, and better application of such techniques.
View Article and Find Full Text PDFThe objective of this study is to determine the cryobiological characteristics of human embryonic kidney (HEK293T) cells. The cell membrane hydraulic conductivity (L(pg)) and the activation energy of water transport (E(Lp)) were determined in the absence/presence of cryoprotectant agent (CPA), while the nucleation rate kinetic and thermodynamic parameters (Ωo(SCN) and κo(SCN)) were determined in the absence of CPA. Since dehydration and intracellular ice formation (IIF) are two factors that may cause damage to cells during the freezing process, systematical freezing experiments were carried out at different cooling rates (5, 10, 15, 20, 30, and 60°C/min) under the commercial available cryomicroscopy (FDCS 196, Linkham, Waterfield, UK) to further explore the cryoinjury mechanism for HEK293T cells.
View Article and Find Full Text PDF