Publications by authors named "Zhiqiang Rao"

The escalating issue of plastic waste generation has prompted the search for an effective solution to address these challenges. In this study, we present a novel plasma-enabled strategy for the rapid breakdown of various types of plastic wastes, including mixtures, into high-value carbon nanomaterials and hydrogen. The H yield and selectivity achieved through the implemented catalyst-free plasma-enabled strategy are 14.

View Article and Find Full Text PDF

Dry reforming of methane (DRM) has been investigated for more than a century; the paramount stumbling block in its industrial application is the inevitable sintering of catalysts and excessive carbon emissions at high temperatures. However, the low-temperature DRM process still suffered from poor reactivity and severe catalyst deactivation from coking. Herein, we proposed a concept that highly durable DRM could be achieved at low temperatures via fabricating the active site integration with light irradiation.

View Article and Find Full Text PDF

Restrained by uncontrollable dehydrogenation process, the target products of methane direct conversion would suffer from an inevitable overoxidation, which is deemed as one of the most challenging issues in catalysis. Herein, based on the concept of a hydrogen bonding trap, we proposed a novel concept to modulate the methane conversion pathway to hinder the overoxidation of target products. Taking boron nitride as a proof-of-concept model, for the first time it is found that the designed N-H bonds can work as a hydrogen bonding trap to attract electrons.

View Article and Find Full Text PDF

The key scientific challenge for methane (CH) direct conversion to methanol (CHOH) is considered to be the prevention of overoxidation of target products, which is restrained by the difficulty in the well-controlled process of selective dehydrogenation. Herein, we take single noble metal atom-anchored hexagonal boron nitride nanosheets with B vacancies (M/BN) as the model materials and first propose that the dehydrogenation in the direct conversion of CH to CHOH is highly dependent on the spin state of the noble metal. The results reveal that the noble metal with a higher spin magnetic moment is beneficial to the formation of the spin channels for electron transfer, which boosts the dissociation of C-H bonds.

View Article and Find Full Text PDF

The surface electron density significantly affects the photocatalytic efficiency, especially the photocatalytic CO reduction reaction, which involves multi-electron participation in the conversion process. Herein, we propose a conceptually different mechanism for surface electron density modulation based on the model of Au anchored CdS. We firstly manipulate the direction of electron transfer by regulating the vacancy types of CdS.

View Article and Find Full Text PDF

Current research of bio-text mining mainly focuses on event extractions. Biological networks present much richer and meaningful information to biologists than events. Bio-entity coreference resolution (CR) is a very important method to complete a bio-event's attributes and interconnect events into bio-networks.

View Article and Find Full Text PDF

Objective: We screened and isolated coronatine-producing stains from various samples.

Methods: The strains were isolated and selected from samples by the methods of streak plate and serial dilution. The samples were sick leaves/branches and soil in which plants got sick according to the symptoms of leaf blight disease and tuber enlargement.

View Article and Find Full Text PDF