Publications by authors named "Zhiqi Xiong"

Chronic methamphetamine (METH) use, a prevalent psychostimulant, is known to impair attention, yet the cellular mechanisms driving these deficits remain poorly understood. Here, we employed a rat model of repeated passive METH injections and evaluated attentional performance using the 5-choice serial reaction time task (5-CSRTT). Using single-nucleus RNA sequencing, immunofluorescence and in situ hybridization, we characterized the response of neurons in the reticulotegmental nucleus (RtTg) to METH exposure.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by TET proteins affects the brain, particularly in postnatal mice lacking Tet genes in excitatory neurons.
  • - Mice without these Tet genes show lowered 5hmC levels, changes in dendritic spine structure, and significant memory deficits, implying a critical role of 5hmC in cognitive function.
  • - Analysis reveals that changes in 5hmC and gene expression are linked to genes tied to synapse development, emphasizing the importance of 5hmC in brain function and health.
View Article and Find Full Text PDF
Article Synopsis
  • Voltage imaging directly measures neuronal activity, providing insights into information processing in neurons and their groups.
  • Researchers developed a new confocal light-field microscope that improves imaging speed and reduces noise, enabling better coverage and less photobleaching.
  • This innovative method allows for recording from over 300 active neurons in a specific volume of the mouse cortex for extended periods, helping to map 3D neural coordination patterns in awake mice.
View Article and Find Full Text PDF
Article Synopsis
  • Primary familial brain calcification (PFBC) is a genetic neurological disorder with no current effective treatment, linked to mutations in the SLC20A2 gene.
  • Researchers identified five new genetic variants in the SLC20A2 gene that disrupt normal splicing of its pre-mRNA, leading to dysfunctional protein production.
  • The use of splice-switching antisense oligonucleotides (ASOs) not only helped restore functional SLC20A2 expression in affected cells but also showed promise in reducing brain calcification and controlling phosphorus levels in animal models, highlighting a potential therapeutic approach for PFBC.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists discovered that problems with phosphate (Pi) levels in the brain can cause brain calcification and worsen brain damage.
  • They found that certain genes, Pit2 and Xpr1, are really important for moving Pi in brain cells called astrocytes, which help control Pi levels.
  • By fixing the problems with these genes in mice, they were able to reduce brain calcification, suggesting that boosting how astrocytes handle Pi could be a good way to help treat brain issues.
View Article and Find Full Text PDF

Objective: Most paroxysmal kinesigenic dyskinesia (PKD) cases are hereditary, yet approximately 60% of patients remain genetically undiagnosed. We undertook the present study to uncover the genetic basis for undiagnosed PKD patients.

Methods: Whole-exome sequencing was performed for 106 PRRT2-negative PKD probands.

View Article and Find Full Text PDF

Oligopeptide permease, OppABCD, belongs to the type I ABC transporter family. Its role is to import oligopeptides into bacteria for nutrient uptake and to modulate the host immune response. OppABCD consists of a cluster C substrate-binding protein (SBP), OppA, membrane-spanning OppB and OppC subunits, and an ATPase, OppD, that contains two nucleotide-binding domains (NBDs).

View Article and Find Full Text PDF

The type I adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter DppABCD is believed to be responsible for the import of exogenous heme as an iron source into the cytoplasm of the human pathogen (). Additionally, this system is also known to be involved in the acquisition of tri- or tetra-peptides. Here, we report the cryo-electron microscopy structures of the dual-function DppABCD transporter in three forms, namely, the , substrate-bound, and ATP-bound states.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and debilitating psychiatric disorder that affects ∼2%-3% of the population globally. Studying spontaneous OCD-like behaviors in non-human primates may improve our understanding of the disorder. In large rhesus monkey colonies, we found 10 monkeys spontaneously exhibiting persistent sequential motor behaviors (SMBs) in individual-specific sequences that were repetitive, time-consuming and stable over prolonged periods.

View Article and Find Full Text PDF

Three pandemics caused by human Betacoronavirus had broken out in the past two decades. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was one of the novel epidemic strains which caused the third pandemic, coronavirus disease 2019 (COVID-19), a global public health crisis. So far, more than millions of people have been infected.

View Article and Find Full Text PDF

Background: Brain-derived neurotrophic factor (BDNF) is known to prevent methamphetamine (METH)-induced neurotoxicity and plays a role in various stages of METH addiction. However, there is a lack of research with longitudinal design on changes in plasma BDNF levels in active METH-dependent individuals.

Aims: The aim of the study was to investigate changes in BDNF levels during METH self-administration in monkeys.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers found that removing CDKL5 from certain neurons causes increased brain activity and spontaneous seizures in mice, linked to a signaling pathway involving tropomyosin-related kinase B (TrkB).
  • * By reducing TrkB signaling in these mice, they were able to restore normal brain activity and prevent seizures, indicating that targeting this pathway could be a potential treatment for epilepsy in people with CDKL5 mutations.
View Article and Find Full Text PDF

Trehalose plays a crucial role in the survival and virulence of the deadly human pathogen (). The type I ATP-binding cassette (ABC) transporter LpqY-SugABC is the sole pathway for trehalose to enter . The substrate-binding protein, LpqY, which forms a stable complex with the translocator SugABC, recognizes and captures trehalose and its analogues in the periplasmic space, but the precise molecular mechanism for this process is still not well understood.

View Article and Find Full Text PDF
Article Synopsis
  • * The study aimed to confirm ultrasound's direct neuromodulation effects on cerebellar function by observing neuronal responses in mouse models using advanced imaging techniques and behavioral assessments related to movement disorders.
  • * Results showed that ultrasound directly increased neural activity in cerebellar cells without affecting non-target areas, and it effectively triggered movement disorders in specific genetic mouse models, highlighting its potential for precise cerebellar manipulation.
View Article and Find Full Text PDF

The adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter, IrtAB, plays a vital role in the replication and viability of Mycobacterium tuberculosis (Mtb), where its function is to import iron-loaded siderophores. Unusually, it adopts the canonical type IV exporter fold. Herein, we report the structure of unliganded Mtb IrtAB and its structure in complex with ATP, ADP, or ATP analogue (AMP-PNP) at resolutions ranging from 2.

View Article and Find Full Text PDF

Angelman syndrome (AS) is a rare neurodevelopmental disorder caused by loss of function mutations in maternally expressed UBE3A. No gene-specific treatment is available for patients so far. Although intact and transcriptionally active, paternally inherited UBE3A is silenced by elongation of antisense long noncoding RNA UBE3A-ATS in neurons.

View Article and Find Full Text PDF

Primary familial brain calcification (PFBC) is an inherited neurodegenerative disorder mainly characterized by progressive calcium deposition bilaterally in the brain, accompanied by various symptoms, such as dystonia, ataxia, parkinsonism, dementia, depression, headaches, and epilepsy. Currently, the etiology of PFBC is largely unknown, and no specific prevention or treatment is available. During the past 10 years, six causative genes (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified in PFBC.

View Article and Find Full Text PDF

Brain calcification is a critical aging-associated pathology and can cause multifaceted neurological symptoms. Cerebral phosphate homeostasis dysregulation, blood-brain barrier defects, and immune dysregulation have been implicated as major pathological processes in familial brain calcification (FBC). Here, we analyzed two brain calcification families and identified calcification co-segregated biallelic variants in the CMPK2 gene that disrupt mitochondrial functions.

View Article and Find Full Text PDF

New anti-tubercular agents are urgently needed to address the emerging threat of drug resistance to human tuberculosis. Here, we have used structure-assisted methods to develop compounds that target mycobacterial membrane protein large 3 (MmpL3). MmpL3 is essential for the transport of mycolic acids, an important cell-wall component of mycobacteria.

View Article and Find Full Text PDF

Presynaptic syntaxin binding protein 1 (STXBP1) is essential for neurotransmitter release. Heterozygous mutations in this protein cause STXBP1 encephalopathy (STXBP1-E), which is characterized by intellectual disabilities and epilepsies. Since nonhuman primates closely resemble humans, monkey models may advance studies on the pathogenesis and therapeutic treatments of STXBP1-E.

View Article and Find Full Text PDF