Publications by authors named "Zhiping Miao"

Head and neck squamous cell carcinoma (HNSCC) is a frequent malignant tumor of the head and neck with a dismal survival probability due to relapse and metastasis. S100As have been identified as being involved in the tumor procession of various cancer types. However, the expressions of S100As in HNSCC and their prognostic relevance are unknown.

View Article and Find Full Text PDF

Bone loss induced by microgravity exposure seriously endangers the astronauts' health, but its countermeasures still have certain limitations. The study aims to find potential protective drugs for the prevention of the microgravity-induced bone loss. Here, we utilized the network pharmacology approach to discover a natural compound calycosin by constructing the compound-target interaction network and analyzing the topological characteristics of the network.

View Article and Find Full Text PDF

Osteoporosis has become a high incident bone disease along with the aging of human population. Long noncoding RNAs (LncRNAs) play an important role in osteoporosis incidence. In this study, we screened out an LncRNA negatively correlated with osteoblast differentiation, which was therefore named Lnc-DIF (differentiation inhibiting factor).

View Article and Find Full Text PDF

RNA therapeutics involve the use of coding RNA such as mRNA as well as non-coding RNAs such as small interfering RNAs (siRNA), antisense oligonucleotides (ASO) to target mRNA, aptamers, ribozymes, and clustered regularly interspaced short palindromic repeats-CRISPR-associated (CRISPR/Cas) endonuclease to target proteins and DNA. Due to their diverse targeting ability and research in RNA modification and delivery systems, RNA-based formulations have emerged as suitable treatment options for many diseases. Therefore, in this article, we have summarized different RNA therapeutics, their targeting strategies, and clinical progress for various diseases as well as limitations; so that it might help researchers formulate new and advanced RNA therapeutics for various diseases.

View Article and Find Full Text PDF

Background: Forkhead box O1 (FoxO1)/β-catenin signaling pathway is a main oxidative defense pathway, which plays essential roles in the regulation of osteoporosis (OP). The natural products possess quality therapeutic effects and few side effects. It is used as a novel strategy in the treatment of OP.

View Article and Find Full Text PDF

Ageing-related osteoporosis is becoming an emerging threat to human health along with the ageing of human population. The decreased rate of osteogenic differentiation and bone formation is the major cause of ageing-related osteoporosis. Microtubule actin cross-linking factor 1 (MACF1) is an important cytoskeletal factor that promotes osteogenic differentiation and bone formation.

View Article and Find Full Text PDF

Objective: Osteoporosis has become the biggest cause of non-fatal health issue. Currently, the limitations of traditional anti-osteoporosis drugs such as long-term ill-effects and drug resistance, have raised concerns toward complementary and alternative therapies, particularly herbal medicines and their natural active compounds. Thus, this study aimed to provide an integrative analysis of active chemicals, drug targets and interacting pathways of the herbs for osteoporosis treatment.

View Article and Find Full Text PDF

Osteoporosis is a frequently occurring bone disease in middle-aged and aged men and women. However, current therapies on this disease are still not ideal. MicroRNAs (miRNAs) are a class of endogenous non-protein-coding RNA with a length of 18-25 nucleotides.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are single-stranded RNA molecules that control gene expression in various processes, such as cancers, Alzheimer's disease, and bone metabolic diseases. However, the regulatory roles of miRNAs in osteoporosis have not been systematically analyzed. Here, we performed a comprehensive analysis to identify the differentially expressed miRNAs involved in osteoporosis.

View Article and Find Full Text PDF

Osteoporosis caused by aging and menopause had become an emerging threat to human health. The reduction of osteoblast differentiation has been considered to be an essential cause of osteoporosis. Osteoblast differentiation could be regulated by LncRNAs, and increasing evidences have proved that LncRNAs may be adopted as potential therapeutic targets for osteoporosis.

View Article and Find Full Text PDF

The primary bone tumor is usually observed in adolescence age group which has been shown to be part of nearly 20% of the sarcomas known today. Giant cell tumor of bone (GCTB) can be benign as well as malignant tumor which exhibits localized dynamism and is usually associated with the end point of a long bone. Giant cell tumor (GCT) involves mononuclear stromal cells which proliferate at a high rate, multinucleated giant cells and stromal cells are equally present in this type of tumor.

View Article and Find Full Text PDF

Context: Osteoporosis is a degenerative bone disease in aging men and women. MiRNAs associated with progressive bone loss in osteoporosis had not been clearly demonstrated.

Objective: The evaluation of the differentially expressed miRNAs in the bone tissue and serum of osteoporotic women with aging.

View Article and Find Full Text PDF

Osteoporosis, a disease characterized by both loss of bone mass and structural deterioration of bone, is the most common reason for a broken bone among the elderly. It is known that the attenuated differentiation ability of osteogenic cells has been regarded as one of the greatest contributors to age-related bone formation reduction. However, the effects of current therapies are still unsatisfactory.

View Article and Find Full Text PDF

Microtubule actin cross-linking factor 1 (Macf1) is a spectraplakin family member known to regulate cytoskeletal dynamics, cell migration, neuronal growth and cell signal transduction. We previously demonstrated that knockdown of Macf1 inhibited the differentiation of MC3T3-E1 cell line. However, whether Macf1 could regulate bone formation in vivo is unclear.

View Article and Find Full Text PDF

Aims: Osteoporosis (OP) is a systemic metabolic bone disease characterized by bone mass decrease and microstructural degradation, which may increase the risk of bone fracture and leading to high morbidity. Dipsaci Radix (DR), one typical traditional Chinese medicine (TCM), which has been applied in the treatment of OP with good therapeutic effects and few side effects. However, the underlying molecular mechanisms of DR to treat OP have not been fully elucidated.

View Article and Find Full Text PDF

As a traditional medical intervention in Asia and a complementary and alternative medicine in western countries, traditional Chinese medicine (TCM) has attracted global attention in the life science field. TCM provides extensive natural resources for medicinal compounds, and these resources are generally regarded as effective and safe for use in drug discovery. However, owing to the complexity of compounds and their related multiple targets of TCM, it remains difficult to dissect the mechanisms of action of herbal medicines at a holistic level.

View Article and Find Full Text PDF

Skeletal systems provide support, movement, and protection to the human body. It can be affected by several life suffering bone disorders such as osteoporosis, osteoarthritis, and bone cancers. It is not an easy job to treat bone disorders because of avascular cartilage regions.

View Article and Find Full Text PDF

Rhodiola rosea L. radix (RRL) is one of the most popular medical herb which has been widely used for the treatment of different diseases effectively, including cardiovascular diseases and nerve system diseases. However, due to the multiple compounds in RRL, the underlying molecular mechanisms of RRL are remained unclear.

View Article and Find Full Text PDF

Structure-activity relationship (SAR) studies are very critical to design ideal gene vectors for gene delivery. However, It is difficult to obtain SAR information of low-generation dendrimers due to the lack of easy structural modification ways. Here, we synthesized a novel family of rigid aromatic backbone-based low-generation polyamidoamine (PAMAM) dendrimers.

View Article and Find Full Text PDF

Airway inflammation is the major pathological feature of asthma. Thus, the current therapeutic strategy for asthma is to control inflammation. Limethason, an anti-inflammation drug, is widely used in rheumatoid arthritis treatment.

View Article and Find Full Text PDF

Mechanical unloading was considered a major threat to bone homeostasis, and has been shown to decrease osteoblast proliferation although the underlying mechanism is unclear. Microtubule actin crosslinking factor 1 (MACF1) is a cytoskeletal protein that regulates cellular processes and Wnt/β-catenin pathway, an essential signaling pathway for osteoblasts. However, the relationship between MACF1 expression and mechanical unloading, and the function and the associated mechanisms of MACF1 in regulating osteoblast proliferation are unclear.

View Article and Find Full Text PDF

Cancer is a polygenic disease characterized by uncontrolled growth of normal body cells, deregulation of the cell cycle as well as resistance to apoptosis. The spectraplakin protein microtubule actin cross-linking factor 1 (MACF1) plays an essential function in various cellular processes, including cell proliferation, migration, signaling transduction and embryo development. MACF1 is also involved in processes such as metastatic invasion in which cytoskeleton organization is a critical element that contributes to tumor progression in various human cancers.

View Article and Find Full Text PDF