Publications by authors named "Zhipeng Zhang"

Scanning Electrochemical Probe Microscopy (SEPM) shows significant potential promise for analyzing localized electrochemical activity at biological interfaces of single entities. Utilizing various SEPM probe manipulations allows real-time monitoring of the morphology and physiological activities of single biological entities, offering vital electrochemical insights into biological processes. This review focuses on the application of five SEPM techniques in imaging single biological entities, highlighting their unique advantages in the observation and quantitative evaluation of biological morphology.

View Article and Find Full Text PDF

Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a growing challenge in clinical treatment globally. Early identification of high-risk patients is essential to control infection spread and improve treatment outcomes. This retrospective study analyzed 152 patients with K pneumoniae infections at the Second People's Hospital of Hefei City, Anhui Province, dividing them into carbapenem-resistant and non-carbapenem-resistant groups.

View Article and Find Full Text PDF
Article Synopsis
  • Tibial fractures are common injuries and require careful monitoring for proper healing, with Osteoprotegerin (OPG) being a crucial marker for this process.
  • A new, highly sensitive electrochemical immunosensor has been developed using a nanocomposite material that enhances detection of OPG in serum, addressing existing methods' limitations in sensitivity and specificity.
  • This immunosensor shows excellent performance in terms of specificity and stability and is validated for clinical use, effectively aiding in the assessment of fracture healing and the evaluation of orthopedic drug efficacy in real patient samples.
View Article and Find Full Text PDF

Renal denervation (RDN) is recognized as an adjunct therapy for hypertension management with a favorable and consistent blood pressure-lowering efficacy and safety profile. Alteration in medication burden is another noteworthy outcome of RDN for clinicians and patients. In this review, we summarized current clinical trials and patient perspectives, focusing on the use of antihypertensive medication (AHM) after RDN.

View Article and Find Full Text PDF

The biotoxicity of nanoplastics (NPs), especially from environmental sources, and "NPs carrier effect" are in the early stages of research. This study presents a machine learning-assisted "shrink-restricted" SERS strategy (SRSS) to monitor molecular changes in the cellular secretome exposure to six types of NPs. Utilizing three-dimensional (3D) Ag@hydrogel-based SRSS, active targeting of molecules within adjustable nanogaps was achieved to track information.

View Article and Find Full Text PDF

Highly enantioselective allylic amination and alkylation of racemic sterically hindered aryl-substituted Morita-Baylis-Hillman (MBH) adducts have been achieved by using an in situ formed Pd-catalyst from an axially chiral phenanthroline ligand. This dynamic kinetic asymmetric transformation (DYKAT) is compatible with cyclic and acyclic secondary amines, dialkyl malonates, β-keto esters, acetylacetone, and malononitrile, affording the corresponding chiral products, such as β-amino acid esters, in up to 95% yield and with up to a 99:1 enantiomeric ratio.

View Article and Find Full Text PDF

Hexavalent chromium (Cr(VI)) has emerged as a contaminant of heavy metal, owing to its wide use in industry. This study focuses on elucidating the interaction between microbial communities and environmental parameters in Cr(VI)-contaminated groundwater near a factory in Henan Province, and evaluating the bio-remediation potential of microorganisms toward Cr(VI) reduction. The highest concentration of Cr(VI) in the groundwater is 208.

View Article and Find Full Text PDF

It is well known that crossbreds show many advantages over purebreds in improving calf health traits, but the immunological factors responsible for this heterosis remain largely unclear. The objective of this study was to compare the cellular immune responses and antibodies of Holstein (HO) and Montbéliarde-sired × Holstein (MH) F1 generation female calves, and investigate the effects of crossbreeding on the immunity. Fifty three-month-old healthy female calves (25 HO, 25 MH) were selected meticulously in a farm with the same criteria.

View Article and Find Full Text PDF

Human parvovirus B19 is a prevalent childhood infectious virus that poses a great challenge to public health, so the detection of B19V is of great importance. In this study, a DNA sensor based on CbAgo, a Cas effector, and a dual electrochemical signal amplification strategy was developed by using a novel nanocomposite MnO/CMK-3/g-CN/AgNPs for initial signal amplification, with CMK being an ordered mesoporous carbon nanomaterial. Single-walled carbon nanotubes (SWCNTs) were used as electrocatalytic probes for secondary signal amplification to detect B19 DNA.

View Article and Find Full Text PDF

Urticaria is characterized by transient itchy symptoms on the skin, usually accompanied by swelling, which is caused by mast cell activation leading to increased vascular permeability and dilation of the dermis. Urticaria involves recurrent activation of mast cells, T cells, eosinophils, and other immune cells around lesioned venules, with complex regulatory systems affecting mast cell functions, potentially contributing to urticaria pathogenesis. The direct causal relationship between immune cells and urticaria is currently unclear.

View Article and Find Full Text PDF

To address the challenge of chiral recognition in terms of efficiency and generality, we propose a novel fluorescence sensing approach by rationally designing metal-ion-responsive chiral molecular tweezers. The flexible and adaptable molecular tweezers enable facile recognition of 31 structurally varied chiral primary amine compounds, including amino acids, amino acid esters, and chiral amines. Notably, upon stimulation by zinc ions, the chiral molecular tweezers demonstrate a higher enantioselective fluorescence response.

View Article and Find Full Text PDF

Snake robots require autonomous localization and mapping capabilities for field applications. However, the characteristics of their motion, such as large turning angles and fast rotation speeds, can lead to issues like drift or even failure in positioning and map building. In response to this situation, this paper starts from the gait motion characteristics of the snake robot itself, proposing an improved gait motion method and a tightly coupled method based on IMU and visual information to solve the problem of poor algorithm convergence caused by head-shaking in snake robot SLAM.

View Article and Find Full Text PDF

Abnormal tumor metabolism leads to tumor growth, metastasis, and recurrence, reprogramming tumor metabolism and activating potent anti-tumor immune response have been demonstrated to have good therapeutic effects on tumor elimination. Copper-based nanomaterials involved in cuproptosis show great prospects in these two aspects, but their efficiency is restricted by Cu homeostasis and the toxicity of the chelator. Here, the pH-responsive AuNRs@CuO core-shell plasmonic hybrid nanorods (ACNRs) have been successfully fabricated to realize microenvironment-controlled release at the tumor site for the combined therapy of cuproptosis and photothermal treatment.

View Article and Find Full Text PDF

The development of multifunctional electrocatalysts with high performance for electrocatalyzing urea oxidation-assisted water splitting is of great significance for energy-saving hydrogen production. In this work, we demonstrate a novel heteroatom engineering strategy for development of B-doped Co as a multifunctional electrocatalyst for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and urea oxidation reaction (UOR). Density functional theory (DFT) results suggest that a B dopant can efficiently adjust the electron reconstruction of the exposure of Co sites nearby and facilitate electron transfer, resulting in an optimal d-band center along with a lower Gibbs free energy barrier.

View Article and Find Full Text PDF

Background: Low-intensity pulsed ultrasound (LIPUS) is a special type of low-intensity ultrasound. In periodontal disease, LIPUS is applied as an adjuvant and non-invasive treatment. It has been reported that LIPUS significantly shifts the macrophage phenotype from M1 to M2, but the specific mechanism behind this shift is still unknown.

View Article and Find Full Text PDF

Nanoscale drug delivery systems that are both multifunctional and targeted have been developed using proteins as a basis, thanks to their attractive biomacromolecule properties. A novel nanocarrier, aptamer (AS1411)-conjugated β-lactoglobulin/poly-l-lysine (BLG/Ap/PL) nanoparticles, was developed in this study. To this unique formulation, the as-prepared nanocarrier blends the distinctive features of an aptamer as a chemotherapeutic targeting agent with those of protein nanocarriers.

View Article and Find Full Text PDF

The objective of this study was to explore the relationship between calf birth traits and their susceptibility to diseases before reaching adulthood. A total of 5253 birth traits of Chinese Holstein calves were examined, including gestation length (GL), calf weight at birth (CW), and calving ease score (CES), which ranges from 1 (easy) to 5 (very difficult). Furthermore, monthly medical records were scrutinized for pneumonia and diarrhea in these calves.

View Article and Find Full Text PDF
Article Synopsis
  • Nanoplastics (NPs) are a new type of pollutant that can become more harmful over time, raising concerns about potential health risks for humans due to their cytotoxic effects.
  • The study introduces a new technique combining 3D dynamic SERS strategy and machine learning to quickly analyze how NPs and their aged forms affect cell health and death, using various polymer types found in polluted water.
  • Findings indicate that prolonged UV exposure increases the toxicity of aged NPs and that the protein coating on these particles reduces their harmful effects, marking a significant step in understanding the biological impacts of nanoplastics at the molecular level.
View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in zero-dimensional lead-free metal halides show promise for use in optical waveguides, particularly in miniaturized photonic devices, due to their high photoluminescence quantum yield (PLQY) and minimal self-absorption.
  • A new organic-inorganic manganese (II) halide crystal, TPS2MnCl4, has been successfully synthesized as microrods through a simple growth method, producing excellent optical properties including an impressive 86% PLQY and ultra-low optical loss coefficient.
  • These microrods not only serve as effective optical waveguides with dual functionalities but also show potential in lighting applications and anti-counterfeiting measures due to their outstanding stability and distinct optical features.*
View Article and Find Full Text PDF

Organogel materials are vital for impact or shock resistance because of their highly tailored dynamic properties. However, concurrently achieving excellent anti-impact and damping performances, high stability, and self-healing properties is challenging. Herein, a novel intelligent protective organogel (IPO) comprising a dynamic boronic ester containing poly(urethane-urea) as the network skeleton with a matching mesh size is synthesized, the network precisely entraps the hyperbranched fluid used as the bulky solvent via steric hindrance.

View Article and Find Full Text PDF

Oral ulcers are a common oral mucosal disease that seriously affect the quality of life. Traditional drug treatments have shown unsatisfactory efficacy and potential adverse reactions. In this study, curcumin-loaded multifunctional magnesium metal-organic framework-embedded hyaluronic acid-soluble microneedles patches were developed to optimize treatment strategies for oral ulcers.

View Article and Find Full Text PDF

In this study, a laboratory-scale improved constructed rapid infiltration (imCRI) system with non-saturated and saturated layers was constructed, and corn cobs as solid carbon source were added to the saturated layer to enhance the removal of nitrogen. Combined analyses of metagenomics and metabolomics were conducted to elucidate the nitrogen removal mechanism in the imCRI system. The results showed that the hydraulic load significantly influenced the treatment performance of the imCRI system, and a hydraulic load of 1.

View Article and Find Full Text PDF