A yolk-shell Au NPs@carbon porous nanoreactor with an active gold (Au) core and a porous carbon shell has been fabricated and demonstrates excellent high activity and cyclic stability as a heterogeneous catalyst for the three-component coupling reaction of aldehyde, amine, and alkyne. Remarkably, the unique yolk-shell nanostructure can protect gold nanoparticles (Au NPs) from aggregation, allow for efficient mass transport, and benefit substrate enrichment, giving rise to enhanced activity, stability, and recyclability.
View Article and Find Full Text PDFStudies on Hippo pathway regulation of tumorigenesis largely center on YAP and TAZ, the transcriptional co-regulators of TEAD. Here, we present an oncogenic mechanism involving VGLL and TEAD fusions that is Hippo pathway-related but YAP/TAZ-independent. We characterize two recurrent fusions, VGLL2-NCOA2 and TEAD1-NCOA2, recently identified in spindle cell rhabdomyosarcoma.
View Article and Find Full Text PDFBrowning of white adipose tissue is hallmarked by increased mitochondrial density and metabolic improvements. However, it remains largely unknown how mitochondrial turnover and quality control are regulated during adipose browning. In the present study, we found that mice lacking adipocyte FoxO1, a transcription factor that regulates autophagy, adopted an alternate mechanism of mitophagy to maintain mitochondrial turnover and quality control during adipose browning.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2024
Short-chain fatty acids (SCFAs) are a subset of fatty acids that play crucial roles in maintaining normal physiology and developing metabolic diseases, such as obesity, diabetes, cardiovascular disease, and liver disease. Even though dairy products and vegetable oils are the direct dietary sources of SCFAs, their quantities are highly restricted. SCFAs are produced indirectly through microbial fermentation of fibers.
View Article and Find Full Text PDFCircadian clock controls daily behavior and physiology. The activity of various signaling pathways affects clock gene expression. Here, we show that the core circadian clock gene is a direct target of the Hippo pathway effector YAP.
View Article and Find Full Text PDFThe hormonal transcription factor androgen receptor (AR) is a master regulator of prostate cancer (PCa). Protein palmitoylation, which attaches a palmitate fatty acid to a substrate protein, is mediated by a class of 23 ZDHHC (Zinc-Finger DHHC motif)-family palmitoyltransferases. Although palmitoylation has been shown to modify many proteins and regulate diverse cellular processes, little is known about ZDHHC genes in cancer.
View Article and Find Full Text PDFAdipose plasticity is critical for metabolic homeostasis. Adipocyte transdifferentiation plays an important role in adipose plasticity, but the molecular mechanism of transdifferentiation remains incompletely understood. Here we show that the transcription factor FoxO1 regulates adipose transdifferentiation by mediating Tgfβ1 signaling pathway.
View Article and Find Full Text PDFClin Sci (Lond)
March 2023
Hormonal signaling plays key roles in tissue and metabolic homeostasis. Accumulated evidence has revealed a great deal of insulin and estrogen signaling pathways and their interplays in the regulation of mitochondrial, cellular remodeling, and macronutrient metabolism. Insulin signaling regulates nutrient and mitochondrial metabolism by targeting the IRS-PI3K-Akt-FoxOs signaling cascade and PGC1α.
View Article and Find Full Text PDFTargeting TEAD autopalmitoylation has been proposed as a therapeutic approach for YAP-dependent cancers. Here we show that TEAD palmitoylation inhibitor MGH-CP1 and analogues block cancer cell "stemness", organ overgrowth and tumor initiation in vitro and in vivo. MGH-CP1 sensitivity correlates significantly with YAP-dependency in a large panel of cancer cell lines.
View Article and Find Full Text PDFMethods Mol Biol
October 2022
Deregulation of transcription factors is critical to hallmarks of cancer. Genetic mutations, gene fusions, amplifications or deletions, epigenetic alternations, and aberrant post-transcriptional modification of transcription factors are involved in the regulation of various stages of carcinogenesis, including cancer initiation, progression, and metastasis. Thus, targeting the dysfunctional transcription factors may lead to new cancer therapeutic strategies.
View Article and Find Full Text PDFThe transcription factor FoxO1 (forkhead box O1) regulates genes that are involved in development, metabolism, cellular innovation, longevity, and stress responses. Assessment of FoxO1 activity is therefore critical to understand the regulatory network of this transcription factor. FoxO1 transactivation activity relies on its ability to bind to the promoters of target genes, which is controlled by posttranslational modifications (e.
View Article and Find Full Text PDFHMGB1 is a ubiquitously expressed protein localized in nucleus, cytoplasm, as well as secreted into extracellular space. Nuclear HMGB1 binds to DNAs and RNAs, regulating genomic stability and transcription. Cytoplasmic HMGB1 regulates autophagy through binding to core autophagy regulators.
View Article and Find Full Text PDFAutophagy is a dynamic process and critical for cellular remodeling and organelle quality control. In response to altered nutritional status (e.g.
View Article and Find Full Text PDFRSC Chem Biol
December 2021
Posttranslational -fatty acylation (or -palmitoylation) modulates protein localization and functions, and has been implicated in neurological, metabolic, and infectious diseases, and cancers. Auto--fatty acylation involves reactive cysteine residues in the proteins which directly react with fatty acyl-CoA through thioester transfer reactions, and is the first step in some palmitoyl acyltransferase (PAT)-mediated catalysis reactions. In addition, many structural proteins, transcription factors and adaptor proteins might possess such "enzyme-like" activities and undergo auto--fatty acylation upon fatty acyl-CoA binding.
View Article and Find Full Text PDFSex difference in adiposity has long been recognized but the mechanism remains incompletely understood. Previous studies suggested that adiposity was regulated by autophagy in response to energy status change. Here, we show that the energy sensor Sirt1 mediates sex difference in adiposity by regulating autophagy and adipogenesis in partnership with estrogen receptor α (ERα).
View Article and Find Full Text PDFAutophagy
January 2021
In recent years, large numbers of hydrophobic/superhydrophobic metal-organic frameworks (MOFs) have been developed. These hydrophobic MOFs not only retain rich structural variety, highly crystalline frameworks, and uniform micropores, but they also have lower affinity towards water and boosted hydrolytic stability. Until now, there were two main strategies to prepare hydrophobic MOFs, including a one-step method and post-synthesis modification (PSM).
View Article and Find Full Text PDFProstate Cancer Prostatic Dis
September 2020
Background And Objective: Our patient cohort revealed that obesity is strongly associated with steroid-5α reductase type 2 (SRD5A2) promoter methylation and reduced protein expression. The underlying mechanism of prostatic growth in this population is poorly understood. Here we addressed the question of how obesity, inflammation, and steroid hormones affect the development of benign prostatic hyperplasia (BPH).
View Article and Find Full Text PDFExcessive adiposity (particularly visceral fat mass) increases the risks of developing metabolic syndrome. Women have lower deposit of visceral fat than men, and this pattern becomes diminished postmenopausally, but the underlying mechanism remains largely unknown. Here, we show that the gender difference in visceral fat distribution is controlled by an estradiol-autophagy axis.
View Article and Find Full Text PDFAdipose tissue regulates metabolic homeostasis by acting as an endocrine organ and energy reservoir. Adipose tissue development and functional maintenance are dependent on adipocyte differentiation, in which autophagy plays an important role. It has been shown that autophagy deficiency dampens adipocyte differentiation, compromises adipose tissue development, dysregulates adipocytokine secretion, and even causes sudden death in young animals.
View Article and Find Full Text PDFMitochondrial uncoupling proteins (UCPs) are inducible and play an important role in metabolic and redox homeostasis. Recent studies have suggested that FoxO1 controls mitochondrial biogenesis and morphology, but it remains largely unknown how FoxO1 may regulate mitochondrial UCPs. Here we show that FoxO1 interacted with transcription factor EB (Tfeb), a key regulator of autophagosome and lysosome, and mediated the expression of UCP1, UCP2 and UCP3 differentially via autophagy in adipocytes.
View Article and Find Full Text PDFBackground: In China, abalone (Haliotis discus hannai) production is growing annually. During industrial processing, the viscera, which are abundant of cellulase, are usually discarded or processed into low-value feedstuff. Thus, it is of interest to obtain cellulase from abalone viscera and investigate its application for preparation of functional oligosaccharides.
View Article and Find Full Text PDF