Chlorhexidine (CHX) is considered the gold standard for controlling periodontal plaque and has been extensively used as a topical agent in treating periodontitis. Nevertheless, the practical clinical application of CHX is still constrained by the inherent limitations of its properties, including toxicity, inadequate biofilm scavenging capacity, and single biological effect. In this study, polyphenolic epigallocatechin gallate (EGCG) has been employed to integrate with CHX to form an EGCG-CHX nanoplatform a facile one-pot method.
View Article and Find Full Text PDFJ Biomater Appl
November 2024
Piezoelectric ceramics are piezoelectric materials with polycrystalline structure and have been widely used in many fields such as medical imaging and sound sensors. As knowledge about this kind of material develops, researchers find piezoelectric ceramics possess favorable piezoelectricity, biocompatibility, mechanical properties, porous structure and antibacterial effect and endeavor to apply piezoelectric ceramics to the field of bone tissue engineering. However, clinically no piezoelectric ceramics have been exercised so far.
View Article and Find Full Text PDFPreservation of mitochondrial functionality is essential for heart hemostasis and cardiovascular diseases treatment. However, the current nanomedicines including liposomes, polymers and inorganic nanomaterials are severely hindered by poor stability, high manufacturing costs and potential biotoxicity. In this research, we present novel polyphenolic nanoparticles (NPs) derived from naturally occurring pomegranate peel (PP, labelled as PPP NPs), which exhibit potent antioxidative and anti-inflammatory properties, serving as a modulator of mitochondrial function.
View Article and Find Full Text PDFHydrogels with intricate 3D networks and high hydrophilicity have qualities resembling those of biological tissues, making them ideal candidates for use as smart biomedical materials. Reactive oxygen species (ROS) responsive hydrogels are an innovative class of smart hydrogels, and are cross-linked by ROS-responsive modules through covalent interactions, coordination interactions, or supramolecular interactions. Due to the introduction of ROS response modules, this class of hydrogels exhibits a sensitive response to the oxidative stress microenvironment existing in organisms.
View Article and Find Full Text PDFPeriodontitis-induced periodontal bone defects significantly impact patients' daily lives. The guided tissue regeneration and guided bone regeneration techniques, which are based on barrier membranes, have brought hope for the regeneration of periodontal bone defects. However, traditional barrier membranes lack antimicrobial properties and cannot effectively regulate the complex oxidative stress microenvironment in periodontal bone defect areas, leading to unsatisfactory outcomes in promoting periodontal bone regeneration.
View Article and Find Full Text PDFSupramolecular polymers (SPs) are an emerging class of drug transporters employed to improve drug therapy. Through the rational design of self-assembling monomers, one can optimize the properties of the resulting supramolecular nanostructures, such as size, shape, surface chemistry, release, and, therefore, biological fates. This study highlights the design of isomeric SN38 prodrugs through the conjugation of hydrophilic oligo(ethylene glycol) (OEG) with hydroxyls at positions 10 and 20 on hydrophobic SN-38.
View Article and Find Full Text PDFNatural polyphenolic compounds play a vital role in nature and are widely utilized as building blocks in the fabrication of emerging functional nanomaterials. Although diverse fabrication methodologies are developed in recent years, the challenges of purification, uncontrollable reaction processes and additional additives persist. Herein, a modular and facile methodology is reported toward the fabrication of natural polyphenolic nanoparticles.
View Article and Find Full Text PDFPoly(levodopa) nanoparticles (P(l-DOPA) NPs) are another kind of melanin mimetic besides well-established polydopamine nanoparticles (PDA NPs). Due to the presence of carboxyl groups, the oxidative polymerization of l-DOPA to obtain particles was not as efficient as that of dopamine. Several established methods toward P(l-DOPA) NP fabrication do not combine convenience, morphological regularity, size controllability, low cost, and adaptability to metal-free application scenarios.
View Article and Find Full Text PDFRiluzole is commonly used as a neuroprotective agent for treating traumatic spinal cord injury (SCI), which works by blocking the influx of sodium and calcium ions and reducing glutamate activity. However, its clinical application is limited because of its poor solubility, short half-life, potential organ toxicity, and insufficient bioabilities toward upregulated inflammation and oxidative stress levels. To address this issue, epigallocatechin gallate (EGCG), a natural polyphenol, was employed to fabricate nanoparticles (NPs) with riluzole to enhance the neuroprotective effects.
View Article and Find Full Text PDFIn the current years, polydopamine nanoparticles (PDA NPs) have been extensively investigated as an eumelanin mimic. However, unlike natural eumelanin, PDA NPs contain no 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-derived units and may be limited in certain intrinsic properties; superior eumelanin-like nanomaterials are still actively being sought. Levodopa (-DOPA) is a natural eumelanin precursor and expected to convert into DHICA and further remain within the final product through covalent or physical interactions.
View Article and Find Full Text PDFMussel-inspired polydopamine (PDA) coatings have gained significant attention in various fields, including biomedicine, energy, detection, and UV protection, owing to their versatile and promising properties. Among these properties, UV shielding stands out as a key feature of PDA coatings. Nevertheless, the current methods for tuning the UV-shielding properties of PDA coatings are quite limited, and only rely on thickness adjustment, which might involve additional issues like color and visible light transmittance to the coating layer.
View Article and Find Full Text PDFNatural evolution has nurtured a series of active molecules that play vital roles in physiological systems, but their further applications have been severely limited by rapid deactivation, short cycle time, and potential toxicity after isolation. For instance, the instability of structures and properties has greatly descended when sanshool is derived from Zanthoxylum xanthoxylum. Herein, natural polyphenols are employed to boost the key properties of sanshool by fabricating a series of nanoparticles (NPs).
View Article and Find Full Text PDFBiomacromolecules
February 2024
Apart from bacterial growth and endotoxin generation, the excessive production of reactive radicals linked with sepsis also has a substantial impact on triggering an inflammatory response and further treatment failure. Hence, the rational design and fabrication of robust and multifunctional nanoparticles (NPs) present a viable means of overcoming this dilemma. In this study, we used antibiotic polymyxin B (PMB) and antioxidant natural polyphenolic protocatechualdehyde (PCA) to construct robust and multifunctional NPs for sepsis treatment, leveraging the rich chemistries of PCA.
View Article and Find Full Text PDFUsing three-dimensional (3D) printing technology to make the porous tantalum plate and modify its surface. The physicochemical properties, cytocompatibility, antioxidant capacity, and histocompatibility of the modified materials were evaluated to prepare for the repair of craniomaxillofacial bone defects. The porous tantalum plates were 3D printed by selective laser melting technology.
View Article and Find Full Text PDFBone defects have a severe impact on the health and lives of patients due to their long-lasting and difficult-to-treat features. Recent studies have shown that there are complex microenvironments, including excessive production of reactive oxygen species. Herein, a surface functionalization strategy using metal-polyphenolic networks was used, which was found to be beneficial in restoring oxidative balance and enhancing osseointegration.
View Article and Find Full Text PDFThe treatment of spinal cord injury (SCI) remains unsatisfactory owing to the complex pathophysiological microenvironments at the injury site and the limited regenerative potential of the central nervous system. Metformin has been proven in clinical and animal experiments to repair damaged structures and functions by promoting endogenous neurogenesis. However, in the early stage of acute SCI, the adverse pathophysiological microenvironment of the injury sites, such as reactive oxygen species and inflammatory factor storm, can prevent the activation of endogenous neural stem cells (NSCs) and the differentiation of NSCs into neurons, decreasing the whole repair effect.
View Article and Find Full Text PDFThis research investigated the effect of different types of plant cell wall fibres, including cereal (i.e., barley, sorghum, and rice), legume (i.
View Article and Find Full Text PDFRapid occlusion is the culprit leading to implantation failure of biological blood vessels. Although adenosine is a clinical-proven drug to overcome the problem, its short half-life and turbulent burst-release limit its direct application. Thus, a pH/temperature dual-responsive blood vessel possessed controllable long-term adenosine secretion was constructed based on acellular matrix via compact crosslinking by oxidized chondroitin sulfate (OCSA) and functionalized with apyrase and acid phosphatase.
View Article and Find Full Text PDFAll-small-molecule dynamic hydrogels have shown great promise in cell culture, tissue engineering, and controlled drug release. The further development of more kinds of all-small-molecule dynamic hydrogels is severely hindered by the lack of enough commensurate building blocks from nature and on the market. Inspired by the widely developed metal-organic framework structures, herein we report a facile fabrication of metallogels by direct gelation of small molecular compounds including aminoglycosides (AGs), 2,2'-bipyridine-4,4'-dicarboxaldehyde (BIPY), and metal ions coordination interactions and Schiff base reactions.
View Article and Find Full Text PDFIron-overload diseases are characterized by a variety of symptoms resulting from excessive iron stores, oxidative stress and consequent end-organ damage. Deferoxamine (DFO) is an iron-chelator that can protect tissues from iron-induced damage. However, its application is limited due to its low stability and weak free radical scavenging ability.
View Article and Find Full Text PDFTo enhance the bioactivity of cellulosic derivatives has become an important strategy to promote their value for clinical applications. Herein, protocatechualdehyde (PCA), a polyphenolic molecule, was used to modify a cellulose acetate (CA) membrane by combining with metal ions to confer an immunomodulatory activity. The PCA-modified CA membrane has shown a significant radical scavenging activity, thereby suppressed the inflammatory response and created a favorable immune microenvironment for osteogenesis and mineralization.
View Article and Find Full Text PDFIntact cells, as the smallest unit of whole foods, were isolated from three legume crops and fermented with human faecal inoculum to elucidate the effect of food macro-nutrients compositional difference (starch, proteins and lipids) on in vitro colonic fermentation profiles. After 48 h of fermentation, the highest production of short-chain fatty acids (SCFAs) were observed for the pea cells, abundance in starch (64.9 %, db).
View Article and Find Full Text PDF