Publications by authors named "Zhipei Li"

In this Letter, a complex-valued double-sideband 16QAM (CV-DSB-16QAM) signaling scheme is proposed and experimentally demonstrated in a 100-Gb/s intensity modulation/direct detection (IM/DD) interconnection system. Unlike the conventional real-valued double-sideband (DSB) quadrature amplitude modulation (QAM) of relatively lower spectral efficiency (SE) and single-sideband (SSB) QAM relying on sharp-edged optical filtering, the CV-DSB-16QAM signal is generated by combining two independent sideband modulated QPSK signals using a single intensity modulator with an optical filtering-free profile, which also saves one photodiode and one analog-to-digital-converter compared with the twin-SSB scheme. Compared to typical pulse amplitude modulation or SSB schemes, the proposed approach offers a compelling alternative for complex-valued DD systems' evolution, particularly in scenarios with high SE demands and controllable chromatic dispersion.

View Article and Find Full Text PDF

An end-to-end (E2E) learning strategy with a channel-aided polar autoencoder (AE) is proposed and experimentally demonstrated in an intensity-modulation direct-detection optical interconnection system. With the global training of the E2E deep neural network, the learned fiber channel and transceiver characteristics are used to back-forward aid the channel indexes of AE, thus obtaining optimal polarization weight in polar encoding to mitigate signal impairments. The experimental results reveal that when the 50 GBaud PAM4 signals are transmitted over standard single mode fiber, the proposed polar AE by E2E learning strategy can effectively improve the received power sensitivity by 1.

View Article and Find Full Text PDF

A joint channel coding and probabilistic shaping (PS) scheme is proposed and experimentally demonstrated in an intensity modulation and direct-detection optical discrete multi-tone (DMT) interconnection. The PS-32 quadrature amplitude modulation (PS-32QAM) is probabilistically reshaped from a 6-bit/symbol 64QAM signal based on polar-coded many-to-one (MTO) mapping, enabling a Gaussian-like symbol probability distribution without shaping or forward error correction redundancy. A bit-interleaved polar-coded modulation iterative decoding system based on joint QAM demapping and polar decoding is employed to retrieve the multi-labeled PS symbols.

View Article and Find Full Text PDF

Ring core fibers (RCFs) offer unique advantages in fiber image transmission, as their weakly-coupled orbital angular momentum mode groups result in high resolution images. However, severe image distortion is still exhibited during fiber transmission when subjected to strong disturbances. Here, we present a novel approach with a differential neural network, namely the polarization speckle differential imaging (PSDI) method, to significantly enhance both the robustness and image resolution of RCF-based imaging systems.

View Article and Find Full Text PDF

In this study, we present an all-optical image reconstruction technique leveraging a diffractive deep neural network (D2NN) within a ring-core fiber (RCF) architecture. Orbital angular momentum (OAM) modes are employed to facilitate imaging transmission. We experimentally validate the efficacy of our approach for complex field diffractive image reconstruction through a multimode fiber (MMF) and RCF at a 1550 nm operating wavelength.

View Article and Find Full Text PDF

We proposed a blind frequency offset estimation (FOE) method for digital subcarrier multiplexing (DSM) signals. By utilising spectral information from the DSM signal and analysing the correlation between the frequency offset (FO) and the summed power of the signal spectrum, the proposed FOE method can accurately and effectively handle various modulation schemes assigned to each subcarrier. The proposed FOE method exhibits a flexibility to the roll-off factor of the root raised cosine (RRC) spectral shaping and can achieve a high level of accuracy in FOE under different roll-off factors and subcarrier numbers, with an FOE error of less than 30 MHz under a fast Fourier transform (FFT) size of 2048.

View Article and Find Full Text PDF

Intensity modulation direct detection (IM/DD) orbital angular momentum (OAM) mode division multiplexing (MDM) technology can greatly expand the capacity of a communication system, which is a promising solution for the next generation of high-speed passive optical networks (PONs). However, there are serious obstacles such as mode coupling, device nonlinear impairment, and quantization noise in an IM/DD OAM-MDM system with a low-resolution digital-to-analog converter (DAC). In this Letter, we propose a novel, to the best of our knowledge, end-to-end (E2E) learning scheme based on a double residual feature decoupling network (DRFDnet) emulator with joint probabilistic shaping (PS) and noise shaping (NS) for the OAM-MDM IM/DD transmission.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are working on a new way to improve how data is sent through special modes of light called orbital angular momentum (OAM).
  • They created a smart computer program called FDFDnet that helps fix problems with the signals as they travel, making them clearer and stronger.
  • In tests, this new method did way better than older technologies, especially by handling lots of data faster and more accurately over long distances!
View Article and Find Full Text PDF

We propose a novel, to the best of our knowledge, scheme for dual vector millimeter-wave (mm-wave) signal generation and transmission, based on optical carrier suppression (OCS) modulation, precoding, and direct detection by a single-ended photodiode (PD). At the transmitter side, two independent vector radio frequency (RF) signals with precoding, generated via digital signal processing (DSP), are used to drive an in-phase/quadrature (I/Q) modulator operating at the optical OCS modulation mode to simultaneously generate two independent frequency-doubling optical vector mm-wave signals, which can reduce the bandwidth requirement of transmitter's components and enhance spectral efficiency. With the aid of the single-ended PD and subsequent DSP at the receiver side, two independent frequency-doubling vector mm-wave signals can be separated and demodulated without data error.

View Article and Find Full Text PDF

Stochastic nonlinear impairment is the primary factor that limits the transmission performance of high-speed orbital angular momentum (OAM) mode-division multiplexing (MDM) optical fiber communication systems. This Letter presents a low-complexity adaptive-network-based fuzzy inference system (LANFIS) nonlinear equalizer for OAM-MDM intensity-modulation direct-detection (IM/DD) transmission with three OAM modes and 15 wavelength division multiplex (WDM) channels. The LANFIS equalizer could adjust the probability distribution functions (PDFs) of the distorted pulse amplitude modulation (PAM) symbols to fit the statistical characteristics of the WDM-OAM-MDM transmission channel.

View Article and Find Full Text PDF

A double key (DK) real-time update and hybrid five-dimensional (5-D) hyperchaotic deoxyribonucleic acid (DNA) dynamic encryption scheme is proposed, which can ensure the security in the orthogonal frequency division multiplexing passive optical network (OFDM-PON). Chaotic sequences for DNA dynamic encryption are produced using a four-dimensional (4-D) hyperchaotic Lü system and a one-dimensional (1-D) logistic map. In this scheme, the DK consists of an external key set, which is stored locally, and an internal key, which is associated with the plaintext and external key.

View Article and Find Full Text PDF

Orbital angular momentum (OAM) mode division multiplexing (MDM) has emerged as a new multiplexing technology that can significantly increase transmission capacity. In addition, probabilistic shaping (PS) is a well-established technique that can increase the transmission capacity of an optical fiber to close to the Shannon limit. However, both the mode coupling and the nonlinear impairment lead to a considerable gap between the OAM-MDM channel and the conventional additive white Gaussian noise (AWGN) channel, meaning that existing PS technology is not suitable for an OAM-MDM intensity-modulation direct-detection (IM-DD) system.

View Article and Find Full Text PDF

As a key technique for achieving ultra-high capacity optical fiber communications, orbital angular momentum (OAM) mode-division multiplexing (MDM) is affected by severe nonlinear impairments, including modulation related nonlinearities, square-law nonlinearity and mode-coupling-induced nonlinearity. In this paper, an equalizer based on a hidden conditional random field (HCRF) is proposed for the nonlinear mitigation of OAM-MDM optical fiber communication systems with 20 GBaud three-dimensional carrierless amplitude and phase modulation-64 (3D-CAP-64) signals. The HCRF equalizer extracts the stochastic nonlinear feature of the OAM-MDM 3D-CAP-64 signals by estimating the conditional probabilities of the hidden variables, thereby enabling the signals to be classified into subclasses of constellation points.

View Article and Find Full Text PDF

Nonlinear impairment in a high-speed orbital angular momentum (OAM) mode-division multiplexing (MDM) optical fiber communication system presents high complexity and strong stochasticity due to the massive optoelectronic devices. In this paper, we propose an Affinity Network (AffinityNet) nonlinear equalizer for an OAM-MDM intensity-modulation direct-detection (IM/DD) transmission with four OAM modes. The labeled training and testing signals from the OAM-MDM system can be regarded as "small sample" and "large target", respectively.

View Article and Find Full Text PDF

Linear optical sampling (LOS) is one of the most powerful techniques for high-speed signal monitoring. To measure the data-rate of signal under test (SUT) in optical sampling, multi-frequency sampling (MFS) was proposed. However, the measurable data-rate range of the existing method based on MFS is limited, which makes it very difficult to measure the data-rate of high-speed signals.

View Article and Find Full Text PDF

We propose a photonic-aided dual-vector radio-frequency (RF) signal generation and detection scheme enabled by bandpass delta-sigma modulation and heterodyne detection. With the aid of the bandpass delta-sigma modulation, our proposed scheme is transparent to the modulation format of the dual-vector RF signals and can support the generation, wireless transmission, and detection of both single-carrier (SC) and orthogonal-frequency-division-multiplexing (OFDM) vector RF signals with high-level quadrature-amplitude-modulation (QAM) modulation. With the aid of the heterodyne detection, our proposed scheme can support up to W-band (75-110 GHz) dual-vector RF signal generation and detection.

View Article and Find Full Text PDF

Orbital angular momentum (OAM) mode-division multiplexing (MDM) is a key technique to achieve ultra-high-capacity optical fiber communications. However, the high nonlinear impairment from optoelectronic devices, such as spatial light modulators, modulators, and photodiodes, is a long-standing challenge for OAM-MDM. In this paper, an equalizer based on a probabilistic neural network (PNN) is presented to mitigate the nonlinear impairment for an OAM-MDM fiber communication system with 32 GBaud Nyquist pulse amplitude modulation-8 (PAM8) intensity-modulation direct-detection (IM-DD) signals.

View Article and Find Full Text PDF

Due to their simple structures and high robustness to fibre dispersion, single-sideband transmission systems using Kramer-Kronig (KK) receivers are an attractive solution for 80 km data centre interconnects. However, a major problem with KK receivers is that the optimal carrier signal power ratio (CSPR) needs to be large, due to the existence of signal-signal beat interference (SSBI), but this results in low receiver sensitivity. We propose two modified KK receivers that can estimate and eliminate SSBI and allow for signal detection when the CSPR is less than 0 dB.

View Article and Find Full Text PDF

A twin-single-sideband (twin-SSB) signal single-photodiode (PD) detection system without optical bandpass filter is experimentally demonstrated for the first time. After direct detection by a single-ended PD at the receiver side, we can directly separate the optical left sideband (LSB) and right sideband (RSB) using a simple one-path digital signal processing algorithm without separating the two sideband signals using an optical bandpass filter (OBPF), thus achieving lower complexity and low cost while doubling the spectral efficiency. Using our proposed twin-SSB scheme, we demonstrate 1-, 2-, and 4-Gbaud LSB geometric shaping 4-quadrature amplitude modulation and RSB quadrature phase shift keying signal transmission over 10 km of single-mode fiber (SMF).

View Article and Find Full Text PDF

Linear optical sampling (LOS) is one of the most promising techniques for optical modulation analyzers. The LOS system generally adopts a mode-locked fiber laser (MFL) to generate an ultra-stable optical pulse to realize under-sampling for signal under test (SUT). However, it is challenging for MFL to produce a high-repetition-frequency pulse, making more measurement errors of conventional LOS technology, especially for high-speed signals.

View Article and Find Full Text PDF

A microfiber optofluidic flowmeter based on the Coriolis principle and a dual-antiresonant reflecting optical waveguide (ARROW) is proposed and experimentally demonstrated. A hollow hole in a hollow-core fiber is fabricated as an optofluidic channel to move the liquid sample, which forms a dual-ARROW in the hollow-core fiber. Two sides of the hollow-core fiber are used as two adjacent Fabry-Perot resonators based on the refractive index modulation of a CO laser, which is used to investigate the vibration signals of the two resonators.

View Article and Find Full Text PDF

Chaotic encryption is a promising scheme for physical layer security. By solving the multi-dimensional chaotic equations and transforming the obtained results, both bit-level and symbol-level encryption can be realized. One of the mainstream symbol-level encryption solutions is the constellation shifting (CS) scheme, which treats the chaotic sequence as artificial noise and adds it to the QAM signal sequence to achieve encryption.

View Article and Find Full Text PDF

Considering the constantly changing network resources and randomly generated spectrum fragmentation problem, a dynamic routing, modulation, and spectrum assignment based on the fuzzy logic control (RMSA-FLC) algorithm is proposed in this paper. A fuzzy logic control (FLC) system based on the degree of fragmentation optimization and the degree of link selection is constructed. The path-control weight (PW) is achieved as the output of the FLC system, and the path and spectrum allocation scheme with the maximum PW is selected for the immediate reservation requests.

View Article and Find Full Text PDF

With the requirement for large capacity communication systems, the technology to close the gap between the achievable information rate and the Shannon capacity limit attracts more and more attention. In this paper, we present a novel scheme of trellis coded modulation combined with probabilistic shaping (PS-TCM) in the intensity-modulation/direct detection (IM/DD) system, using generalized frequency division multiplexing (GFDM). The principle of PS-TCM is analyzed with mutual information.

View Article and Find Full Text PDF