Publications by authors named "Zhimou Xu"

Among the transition metal oxides, hematite (α-FeO) has been widely used in the preparation of memristors because of its excellent physical and chemical properties. In this paper, α-FeO nanowire arrays with a preferred orientation along the [110] direction were prepared by a facile hydrothermal method and annealing treatment on the FTO substrate, and then α-FeO nanowire array-based Au/α-FeO/FTO memristors were obtained by plating the Au electrodes on the as-prepared α-FeO nanowire arrays. The as-prepared α-FeO nanowire array-based Au/α-FeO/FTO memristors have demonstrated stable nonvolatile bipolar resistive switching behaviors with a high resistive switching ratio of about two orders of magnitude, good resistance retention (up to 10 s), and ultralow set voltage (V = +2.

View Article and Find Full Text PDF

Thin-film silicon solar cells (TSSC) has received great attention due to its advantages of low cost and eco-friendly. However, traditional single-layer patterned solar cells (SPSC) still fall short in light-trapping efficiency. This article presents an all layers patterned (ALP) conical nanostructured TSSC to enhance the low absorption caused by the thin absorption layers.

View Article and Find Full Text PDF

Phase generated carrier (PGC) is widely applied in interferometric phase estimation for distance, vibration and velocity measurements. However, traditional PGC methods suffer from nonlinear effects, causing limitations to demodulation of signal. Modified PGC methods, such as ellipse fitting algorithm (EFA), resolves these issues, but usually requires additional phase shift.

View Article and Find Full Text PDF

Plasmonic nanoparticles that self-assemble into highly ordered superlattice nanostructures hold substantial promise for facilitating ultra-trace surface-enhanced Raman scattering (SERS) detection. Herein, we propose a boiling-point evaporation method to synthesize ordered monocrystal-like superlattice Au nanostructures (OML-Au NTs) with a polyhedral morphology. Combined with thermal nanoimprint technology, OML-Au NTs were directly transferred to impact-resistant polystyrene (IPS) flexible SERS substrates, the obtained flexible substrates (donated as OML-Au NTs/IPS) detection limit for R6G molecules as low as 10 M.

View Article and Find Full Text PDF

Reliability of nonvolatile resistive switching devices is the key point for practical applications of next-generation nonvolatile memories. Nowadays, nanostructured organic/inorganic heterojunction composites have gained wide attention due to their application potential in terms of large scalability and low-cost fabrication technique. In this study, the interaction between polyvinyl alcohol (PVA) and two-dimensional material molybdenum disulfide (MoS) with different mixing ratios was investigated.

View Article and Find Full Text PDF

Surface anti-reflection (AR) with nanometer-scaled texture has shown excellent light trapping performance involving optical devices. In this work, we developed a simple and lithography-free structure replication process to obtain large scale surface cup-shaped nano-pillar (CSNP) arrays for the first time. A method of depositing was used for pattern transfer based on PMMA pre-coated through-hole anodic aluminum oxide (AAO) thin film (~500 nm), and eventually, the uniformity of the transferred nanostructures was guaranteed.

View Article and Find Full Text PDF

Exploitation of high-efficiency and low-cost catalysts for dehydrogenation of the ideal hydrogen storage material (ammonia borane) can effectively promote the development of hydrogen economy. Here, we report an efficient and economical non-noble-metal magnetic catalyst (NiCoP@NHPC900) with nanoparticles uniformly distributed on MOF-derived (metal-organic framework) nitrogen-doped hierarchical porous carbon (NHPC900) by a one-step synthesis method. The catalyst has achieved a superior initial total turnover frequency (TOF) of 125.

View Article and Find Full Text PDF

Fabricating large-scale nanoarrays is a significant and challenging work in the field of nanometer devices. Anodic aluminum oxide (AAO) membrane is considered as a promising mask due to its inherent advantages such as low-cost and tunable pore diameter. However, there are few reports on the use of non-through-hole large-area AAO membrane as a mask.

View Article and Find Full Text PDF

GaN is one of the most promising materials for high PEC efficiency to produce clean, renewable hydrogen in an ecofriendly manner (Ebaid et al., 2015; Kamimura et al., 2017; Yang et al.

View Article and Find Full Text PDF

The GaN truncated nanocone is an excellent candidate for better photoelectrochemical efficiency than other GaN nanostructures. Here the highly ordered GaN truncated nanocone array was fabricated using a pre-deposited metallic nano-hemispheres template on a wafer scale. The highly ordered profiles of pre-deposited metallic nano-hemispheres template were defined by anodic aluminum oxide (AAO) masks through electron beam evaporation.

View Article and Find Full Text PDF

Energy harvesting and storage are two distinct processes that are generally achieved using two separated parts based on different physical and chemical principles. Here we report a self-charging electrokinetic supercapacitor that directly couples the energy harvesting and storage processes into one device. The device consists of two identical carbon nanotube/titanium electrodes, separated by a piece of anodic aluminum oxide nanochannels membrane.

View Article and Find Full Text PDF

In this paper, a 2 inch random nanohole Si template with hole diameter of 36-97 nm is employed for direct tailoring the Si substrate for antireflection. The random nanohole Si template is fabricated from the natural self-organization process and can be used repeatedly in nanoimprint lithography (NIL). The surface roughness induced from the nanohole structured surface enhanced the antiadhesion property (contact angle of 128°) of the Si template for high accuracy soft mold replication.

View Article and Find Full Text PDF

In order to control nanoimprint lithography processes to achieve good fidelity, accurate characterization of structural parameters of nanoimprinted resist patterns is highly desirable. Among the possible techniques, optical scatterometry is relatively ideal due to its high throughput, low cost, and minimal sample damage. Compared with conventional optical scatterometry, which is usually based on reflectometry and ellipsometry and obtains at most two ellipsometric angles, Mueller matrix ellipsometry (MME) based scatterometry can provide up to 16 quantities of a 4 × 4 Mueller matrix in each measurement and can thereby acquire much more useful information about the sample.

View Article and Find Full Text PDF

Voltage-stabilized supercapacitors: A single supercapacitor formed with PCBM/Pt/IPS nanorod-array electrodes is designed and delivers enhanced areal capacitance, capacitance retention, and excellent electrical stability under bending, while a significant voltage-decrease is observed during the discharging process. Once integrated with the memristor, the memristor-integrated supercapacitor systems deliver an extremely low voltage-drop, indicating greatly enhanced voltage-stabilizing features.

View Article and Find Full Text PDF

Position-configurable, reproducible, vertically aligned nanosheets assemblies (ANAs) arrays are fabricated by polymer-templated electrodeposition method at room temperature. Here, nanoimprint lithography is utilized to fabricate polymer template on the fluorine-doped tin oxide substrate for the purpose of evenly tuning the location of Ag nanostructures. Subsequently, vertically aligned ANAs can be achieved at the bottom of each hole via electrodeposition in a mixed aqueous solution of AgNO3 and citric acid.

View Article and Find Full Text PDF