Publications by authors named "Zhiming Suo"

G-protein coupled receptor kinase-5 (GRK5) deficiency has been linked to early Alzheimer's disease in humans and mouse models of the disease. To determine potential roles of GRK5 in the disease pathogenesis, the GRK5 knockout mouse was evaluated at pathological and behavioral levels. We found that these mice displayed an age-dependent increase in hippocampal axonal defects characterized by clusters of axonal swellings that accumulated abnormal amounts of molecular motor proteins, microtubule-associated proteins, intracellular beta-amyloid, and subcellular organelles.

View Article and Find Full Text PDF

Tissue transglutaminase (tTG) is a member of a multigene family principally involved in catalyzing the formation of protein cross-links. Unlike other members of the transglutaminase family, tTG is multifunctional since it also serves as a guanosine triphosphate (GTP) binding protein (Galpha(h)) and participates in cell adhesion. Different isoforms of tTG can be produced by proteolysis or alternative splicing.

View Article and Find Full Text PDF

Although the central nervous system (CNS) of mammals has had poor prospects for regeneration, recent studies suggest this might improve from blocking "secondary cell loss" or apoptosis. In this regard, intravenous activated protein C (aPC) improved neurologic outcomes in a rat compression spinal cord injury (SCI) model. Protein C activation occurs when the serine protease thrombin binds to the cell surface proteoglycan thrombomodulin (TM) forming a complex that halts coagulation.

View Article and Find Full Text PDF

Overwhelming evidence indicates that the effects of beta-amyloid (Abeta) are dose dependent both in vitro and in vivo, which implies that Abeta is not directly detrimental to brain cells until it reaches a threshold concentration. In an effort to understand early Alzheimer's disease (AD) pathogenesis, this study focused on the effects of subthreshold soluble Abeta and the underlying molecular mechanisms in murine microglial cells and an AD transgenic mouse model. We found that there were two phases of dose-dependent Abeta effects on microglial cells: at the threshold of 5 microm and above, Abeta directly induced tumor necrosis factor-alpha (TNF-alpha) release, and at subthreshold doses, Abeta indirectly potentiated TNF-alpha release induced by certain G-protein-coupled receptor (GPCR) activators.

View Article and Find Full Text PDF

Biomedical researchers interested in amyotrophic lateral sclerosis (ALS) must invoke newly developing technologies if we are to discover pharmaceutical treatments that will help a significant population of patients with the disease. The focus of ALS research over the last 10 years has been on reactive oxygen species (ROS) and glutamate excitotoxicity, resulting in several clinical trials and the launch of the only drug currently available for the treatment of ALS, riluzole. Unfortunately, the therapeutic benefits have been minimal, at best, and the prognosis for patients with ALS has not improved beyond very modest retardation of the disease course.

View Article and Find Full Text PDF

Tau hyperphosphorylation, leading to self-aggregation, is widely held to underlie the neurofibrillary degeneration found in Alzheimer's disease (AD) and other tauopathies. However, it is unclear exactly what environmental factors may trigger this pathogenetic tau hyperphosphorylation. From several perspectives, the coagulation serine protease, thrombin, has been implicated in AD and activates several different protein kinase pathways but has not previously been shown how it may contribute to AD pathogenesis.

View Article and Find Full Text PDF

We have previously reported that thrombin, the ultimate serine protease in the coagulation cascades, is a proinflammatory agent that causes proliferation and activation of brain microglial cells. However, participation of its principal receptor, the protease-activated receptor 1 (PAR1) appears to be limited to promoting microglial proliferation and not induction of inflammatory mediators. In the present study, we now report that thrombin action in promoting inflammatory mediators from brain microglia is mediated through another thrombin receptor, PAR4.

View Article and Find Full Text PDF

Activation of microglia, the resident macrophages in the CNS, plays a significant role in neuronal death or degeneration in a broad spectrum of CNS disorders. Recent studies indicate that nanomolar concentrations of the serine protease, thrombin, can activate microglia in culture. However, in contrast to other neural cells responsive to thrombin, the participation of novel protease-activated receptors (PARs), such as the prototypic thrombin receptor PAR1, in thrombin-induced microglial activation was cast in doubt.

View Article and Find Full Text PDF

Increasing interest and awareness of protein aggregation as being implicated in neurodegenerative processes has developed in recent years. One novel mechanism for this may be transglutaminase (TGase)-mediated protein crosslinking, that is involved in a variety of natural processes ranging from the stabilization of fibrin clots to production of the epidermal cell envelope and the fluid barrier of the skin. TGases are also implicated in both function and dysfunction of the central (CNS) and peripheral (PNS) nervous systems.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlhrk4n8mjhkiherkis0k5bmji3fads78): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once