Publications by authors named "Zhiming Rao"

Riboflavin, an important vitamin utilized in pharmaceutical products and as a feed additive, is mainly produced by metabolically engineered bacterial fermentation. However, the reliance on antibiotics in the production process leads to increased costs and safety risks. To address these challenges, an antibiotic-free riboflavin producer was constructed using metabolic engineering approaches coupled with a novel plasmid stabilization system.

View Article and Find Full Text PDF

targeted mutagenesis technologies are the basis for the continuous directed evolution of specific proteins. Here, an efficient mutagenesis system (CgMutaT7) for continuous evolution of the targeted gene in was developed. First, cytosine deaminase and uracil-DNA glycosylase inhibitor were sequentially fused to T7 RNA polymerase using flexible linkers to build the CgMutaT7 system, which introduces mutations in targeted regions controlled by the T7 promoter.

View Article and Find Full Text PDF

In addressing the challenges posed by extended fermentation cycles and high-salt conditions in high-salt liquid-state fermentation soy sauce (HLFSS) production, a high-throughput screening method was devised to identify thermally stable l-glutaminase mutants. This study yielded mutants A146D and A51D, exhibiting enhanced thermal stability. Computer-aided analysis revealed that these mutations introduced additional forces, compacting the protein structure and lowering the Gibbs free energy, thereby improving thermostability.

View Article and Find Full Text PDF

have been widely used in industrial compound production for their incomplete oxidation ability. However, they are often subjected to a wide variety of severe environmental stresses, such as extreme pH, high temperature, osmotic pressure, and organic solvents, which greatly repress microbial growth viability and productivity. As typical biocatalysis chassis cells with a high tolerance to external environmental stresses, it is extremely important to construct highly tolerant chassis cells and understand the tolerance mechanisms of and how different stresses interact with the cell: membranes, phospholipid bilayers, transporters, and chaperone proteins.

View Article and Find Full Text PDF

The rapid development of high-productivity strains is fundamental for bio-manufacture in industry. Here, Multi-module metabolic engineering was implemented to reprogram Escherichia coli, enabling it to rapidly transitioning from zero-producer to hyperproducer of L-threonine. Firstly, the synthesis pathway of L-threonine was rationally divided into five modules, and the rapid production of L-threonine was achieved by optimizing the expression of genes in each module.

View Article and Find Full Text PDF
Article Synopsis
  • A new strain of bacteria, Raoultella ornithinolytica YX-4, was found in pig farm wastewater and can effectively remove ammonium, nitrate, nitrite, and phosphorus.
  • The strain exhibits pathways for heterotrophic nitrification, aerobic denitrification, and phosphorus accumulation, achieving removal rates of 99%, 97%, and 93% for ammonia and nitrate/nitrite, respectively, under optimal conditions.
  • This study is the first to report on the denitrification capabilities of R. ornithinolytica and emphasizes the expression of key enzyme genes related to wastewater treatment efficiency.
View Article and Find Full Text PDF

Exploring effective remodeling strategies to further improve the productivity of high-yield strains is the goal of biomanufacturing. However, the lack of insight into host-specific metabolic networks prevents timely identification of useful engineering targets. Here, multidimensional engineering strategies were implemented to optimize the global metabolic network for improving l-threonine production.

View Article and Find Full Text PDF
Article Synopsis
  • Bacillus subtilis is being explored as a microbial factory for producing phospholipase D (PLD), but its production levels are currently low.
  • Researchers developed an improved secretion system by optimizing the promoter and signal peptides, leading to a production peak of 4056.9 U/mL of PLD with an efficiency of 52.0 U/mL/h.
  • Additionally, they created a phosphatidic acid (PA) biosynthesis system using this PLD, achieving a record PA yield of 219.1 g/L, marking significant advancements for industrial applications in enzyme production and protein overexpression.
View Article and Find Full Text PDF

D-mannose is a natural hexose with great economic and application values in the food, medicine, and cosmetic fields. However, most biosynthesis methods of D-mannose rely on as the host, which poses safety issues during the production process and imposes limitations on subsequent applications. This study compared the enzyme properties of mannose isomerases from multiple sources to select the most suitable source.

View Article and Find Full Text PDF

1,4-butanediol is an important intermediate widely used in chemical, agricultural, and pharmaceutical industries. This study constructed a new short path for the production of 1,4-butanediol with glucose as the substrate by combining enzyme engineering and metabolic engineering. Firstly, a novel path catalyzed by α-ketoglutarate decarboxylase (SucA), carboxylate reductase (Car), and alcohol dehydrogenase (YqhD) was designed by database mining, and the synthesis of 1,4-butanediol was achieved after introduction of the path into W3110 (K-12) chassis cells.

View Article and Find Full Text PDF

Salidroside is a functional ingredient with wide applications in food and pharmaceutical fields. It is conventionally produced by extraction from plants, the application of which is limited by the scarcity of raw materials and cumbersome process. This study achieved the efficient production of salidroside by biosynthesis with tyrosol as the substrate.

View Article and Find Full Text PDF

Guanidinoacetic acid, as an energetic substance, has a wide range of applications in the food, pharmaceutical, and feed industries. However, the biosynthesis of guanidinoacetic acid has not been applied in industrial production. In this study, we designed the synthetic route of guanidinoacetic acid in a food-grade strain of .

View Article and Find Full Text PDF

Genomic integration of heterologous genes is the preferred approach in industrial fermentation-related strains due to the drawbacks associated with plasmid-mediated microbial fermentation, including additional growth burden, genetic instability, and antibiotic contamination. Synthetic biology and genome editing advancements have made gene integration convenient. Integrated expression is extensively used in the field of biomanufacturing and is anticipated to become the prevailing method for expressing recombinant proteins.

View Article and Find Full Text PDF

Currently, fructooligosaccharides (FOS) are converted from sucrose by purified enzymes or fungal cells, but these methods are costly and time-consuming. Here, the optimal fermentation conditions for strain E326 were determined through fermentation optimization: initial glucose 200 g/L, NaCl 25 g/L, inoculum volume 20 %, dissolved oxygen 20-30 %, pH 3, and glucose feeding concentration 100 g/L, which increased erythritol titer by 1.5 times.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the coevolution of bacteria and bacteriophages, highlighting how both have developed diverse mechanisms for infection and immunity against each other.
  • Researchers isolated and characterized two specific bacteriophages, JNUWH1 and JNUWD, from factory fermentation pollutants, noting their survival, reproductive capabilities, and genetic similarities.
  • The findings suggest that these phages could be used as additives in fermentation processes to combat resistant bacterial strains, indicating potential applications in food and bioproducts.
View Article and Find Full Text PDF

High spontaneous mutation rate is crucial for obtaining ideal phenotype and exploring the relationship between genes and phenotype. How to break the genetic stability of organisms and increase the mutation frequency has become a research hotspot. Here, we present a practical and controllable evolutionary tool (oMut-Cgts) based on dual genetic level modification engineering for Corynebacterium glutamicum.

View Article and Find Full Text PDF

Aromatic amino acids (AAA) and derived compounds have enormous commercial value with extensive applications in the food, chemical and pharmaceutical fields. Microbial production of AAA and derived compounds is a promising prospect for its environmental friendliness and sustainability. However, low yield and production efficiency remain major challenges for realizing industrial production.

View Article and Find Full Text PDF

The application of synthetic biology tools to modulate gene expression to increase yield has been thoroughly demonstrated as an effective and convenient approach in industrial production. In this study, we employed a high-throughput screening strategy to identify a 5' UTR sequence from the genome of 168. This sequence resulted in a 5.

View Article and Find Full Text PDF

Chemical production wastewater contains large amounts of organic solvents (OSs), which pose a significant threat to the environment. In this study, a 10 g·L styrene oxide tolerant strain with broad-spectrum OSs tolerance was obtained via adaptive laboratory evolution. The mechanisms underlying the high OS tolerance of tolerant strain were investigated by integrating physiological, multi-omics, and genetic engineering analyses.

View Article and Find Full Text PDF

Microbial cell factories utilize renewable raw materials for industrial chemical production, providing a promising path for sustainable development. is widely used in industry for its food safety properties, but challenges remain in the limitations of microbial fermentation. This study proposes a novel strategy based on lifespan engineering to design robust chassis cells to supplement traditional metabolic modification strategies that can alleviate cell autolysis, tolerate toxic substrates, and get a higher mass transfer efficiency.

View Article and Find Full Text PDF

Branched-chain amino acids (BCAAs) such as L-valine, L-leucine, and L-isoleucine are widely used in food and feed. To comply with sustainable development goals, commercial production of BCAAs has been completely replaced with microbial fermentation. However, the efficient production of BCAAs by microorganisms remains a serious challenge due to their staggered metabolic networks and cell growth.

View Article and Find Full Text PDF

(R)-Citronellal is a valuable molecule as the precursor for the industrial synthesis of (-)-menthol, one of the worldwide best-selling compounds in the flavors and fragrances field. However, its biocatalytic production, even from the optically pure substrate (E)-citral, is inherently limited by the activity of Old Yellow Enzyme (OYE). Herein, we rationally designed a different approach to increase the activity of OYE in biocatalytic production.

View Article and Find Full Text PDF

L-Tryptophan hydroxylation catalyzed by tryptophan hydroxylase (TPH) presents a promising method for synthesizing 5-hydroxytryptophan (5-HTP), yet the limited activity of wild-type human TPH2 restricts its application. A high-activity mutant, MT10 (H318E/H323E), was developed through semi-rational active site saturation testing (CAST) of wild-type TPH2, exhibiting a 2.85-fold increase in k/K over the wild type, thus enhancing catalytic efficiency.

View Article and Find Full Text PDF

Hydroxylated steroids are value-added products with diverse biological activities mediated by cytochrome P450 enzymes, however, few has been thoroughly characterized in fungi. This study introduces a rapid identification strategy for filamentous fungi P450 enzymes through transcriptome and bioinformatics analysis. Five novel enzymes (CYP68J5, CYP68L10, CYP68J3, CYP68N1 and CYP68N3) were identified and characterized in Saccharomyces cerevisiae or Aspergillus oryzae.

View Article and Find Full Text PDF

L-theanine is a natural non-protein amino acid with wide applications. Thus, a high yield of L-theanine production is required on an industrial scale. Herein, an efficient L-theanine-producing strain of Corynebacterium glutamicum was constructed by combining protein and metabolic engineering.

View Article and Find Full Text PDF