Background: Acute vascular rejection (AVR) and systemic inflammation in xenograft recipients (SIXR) negatively impact the xenografts survival, and novel immunosuppressants are required to improve survival outcomes. We previously reported that TJ-M2010-5, a myeloid differentiation factor 88 (MyD88) inhibitor, exerts excellent anti-rejection effects in allogeneic transplantation. The aim of the present study was to evaluate the efficacy of TJ-M2010-5 in preventing AVR and SIXR and to investigate whether combined treatment of TJ-M2010-5 with anti-CD154 antibody (MR1) could prolong xenograft survival furthermore.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is the main histologic type of liver cancer. It accounts for the majority of all diagnoses and deaths due to liver cancer. The induction of tumor cell death is an effective strategy to control tumor development.
View Article and Find Full Text PDFCerebral ischemia-reperfusion injury (CIRI) inevitably occurs after vascular recanalization treatment for ischemic stroke. The accompanying inflammatory cascades have a major impact on outcome and regeneration after ischemic stroke. Evidences have demonstrated that TLR/MyD88/NF-κB signaling contributes to CIRI.
View Article and Find Full Text PDFBackground: . With the development of medical technology and increased surgical experience, the number of patients receiving liver transplants has increased. However, restoration of liver function in patients is limited by the occurrence of hepatic ischemia-reperfusion injury (IRI).
View Article and Find Full Text PDFAims: Previous studies have reported that glucagon-like peptide-1 (GLP-1) may play a critical role in the development of intestinal ischemia-reperfusion (I/R) injury. The present study aimed to investigate whether liraglutide (GLP-1 analog) protects against intestinal I/R injury and reveals the possible underlying mechanism.
Main Methods: Temporary superior mesenteric artery occlusion was performed to establish an intestinal I/R injury mouse model.
Survival of transplanted hearts is often limited by cold ischemia time. Here, we assessed the effects of the small molecular compound TJ-M2010-5 on graft preservation. In a cardiac cold ischemia/reperfusion model, TJ-M2010-5 ameliorated myocardial ischemia/reperfusion injury (MIRI) in histidine-tryptophan-ketoglutarate (HTK) organ preservation solution.
View Article and Find Full Text PDFLiver fibrosis is the result of most chronic inflammatory liver damage and seriously endangers human health. However, no drugs have been approved to treat this disease. Previous studies showed that the Toll-like receptors (TLRs)/myeloid differentiation factor-88 (MyD88)/nuclear factor-κB (NF-κB) pathway plays a key role in liver fibrosis.
View Article and Find Full Text PDFCardiomyocytes, macrophages, and fibroblasts play important roles in inflammation and repair during myocardial ischemia/reperfusion injury (MIRI). Myeloid differentiation primary response 88 (MyD88) is upregulated in immunocytes, cardiomyocytes, and fibroblasts during MIRI. MyD88 induces the secretion of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α), while fibroblasts are recruited and activated to mediate cardiac remodeling.
View Article and Find Full Text PDFMyD88 has been implicated in the tumourigenesis, metastasis and recurrence of breast cancer (BC). Here we utilized TJ-M2010-2 (TJ), an inhibitor of MyD88 homodimerimerization, and siMyD88 to suppress the function of MyD88 in MCF-7 and MDA-MB-231 cells. BC cells were treated in vitro and xenografted into nude mice to generate a model in vivo.
View Article and Find Full Text PDFB cell hyperactivities are involved in the development of systemic lupus erythematosus (SLE). Toll-like receptor 7 (TLR7) in the B cells plays a pivotal role in the pathogenesis of SLE. Previous studies have focused on the intrinsic role of B cells in TLR7/MyD88 signaling and consequently on immune activation, autoantibody production, and systemic inflammation.
View Article and Find Full Text PDFBackground: Dysfunction of oxalate synthesis can cause calcium oxalate stone disease and inherited primary hyperoxaluria (PH) disorders. PH type I (PH1) is one of the most severe hyperoxaluria disorders, which results in urolithiasis, nephrocalcinosis, and end-stage renal disease. Here, we sought to determine the role of microRNAs in regulating AGXT to contribute to the pathogenesis of mutation-negative idiopathic oxalosis.
View Article and Find Full Text PDFExcessive activation of the TLR/MyD88 signaling pathway contributes to several inflammation-related diseases. Previously, our laboratory synthesized a novel thiazaol-aminoramification MyD88 inhibitor named TJ-M2010-5. In this study, we interrogated the role of MyD88, as well as the protective effect of TJ-M2010-5, in a d-gal/LPS-induced acute liver injury mouse model.
View Article and Find Full Text PDFBackground/aims: The TLR/MyD88/NF-κB signaling pathway has been successfully used to treat renal interstitial fibrosis (RIF). However, the exact therapeutic mechanism is still unknown. Here, we assessed the therapeutic efficacy of TJ-M2010-2, a small molecular compound that inhibits MyD88 homodimerization, in RIF induced by ischemia reperfusion injury (IRI).
View Article and Find Full Text PDF