Publications by authors named "Zhimeng Xu"

Ethnopharmacological Relevance: Buyang Huanwu Decoction (BYHWD), a traditional prescription known for its Supplementing Qi and Promoting Blood Circulation, has demonstrated noteworthy therapeutic roles in regulating macrophage polarization to atherosclerosis (AS). However, its underlying mechanisms remain unknown.

Aim Of The Study: The purpose of this paper was to decipher mechanism of BYHWD in regulating macrophage polarization to alleviate AS.

View Article and Find Full Text PDF

Microorganisms in the sediment play a pivotal role in the functioning and stability of seagrass ecosystems and their dynamics are influenced by the nutrient acquisition strategies of host plants. While the distinct impacts of microbial generalists and specialists on community dynamics are recognized, their distribution patterns and ecological roles within seagrass ecosystems remain largely unexplored. To address this issue, we conducted an analysis of community assembly processes and co-occurrence relationships of both microbial generalists and specialists within sediment profiles (0-100 cm) from seagrass habitats subjected to differing land use conditions.

View Article and Find Full Text PDF

The shift between photoautotrophic and phagotrophic strategies in mixoplankton significantly impacts the planktonic food webs and biogeochemical cycling. Considering the projected global warming, studying how temperature impacts this shift is crucial. Here, we combined the transcriptome of in-lab cultures (mixotrophic dinoflagellate sp.

View Article and Find Full Text PDF

Neuston, situated at the air-sea interface, stands as a crucial frontier in the realm of the global warming. Despite its unique habitat, there remains a need to substantiate the composition, diel dynamic and biotic-abiotic interaction of neustonic zooplankton in the tropical seas. In this study, we present rare observational data on neustonic zooplankton (0-20 cm) in the oligotrophic tropical South China Sea (SCS) during the summer of 2022.

View Article and Find Full Text PDF

The oceanic-to-neritic species shift of microzooplanktonic tintinnids and their interaction with relevant abiotic variables are two crucial processes in the marine ecosystem. However, these processes remain poorly documented in China's marginal seas. In the summer of 2022, we investigated the community structure of pelagic tintinnids in surface waters from the South China Sea (SCS) to the Yellow Sea (YS), passing through the East China Sea (ECS).

View Article and Find Full Text PDF

Plant growth-promoting rhizobacteria (PGPR) inoculation is a crucial strategy for maintaining the sustainability of agriculture and presents a promising solution for seagrass ecological restoration in the face of disturbances. However, the possible roles and functions of PGPRs in the seagrass rhizosphere remain unclear. Here, we isolated rhizosphere bacterial strains from both reef and coastal regions and screened two PGPR isolates regarding their in vivo functional traits.

View Article and Find Full Text PDF

Microbial food webs (MFW) play an indispensable role in marine pelagic ecosystem, yet their composition and response to abiotic variables were poorly documented in the oligotrophic tropical Western Pacific. During winter of 2015, we conducted a survey to examine key components of MFW, including Synechococcus, Prochlorococcus, picoeukaryotes, heterotrophic prokaryotes (HP), heterotrophic/pigmented nanoflagellates and ciliates, across water column from surface to 2000 m. Each MFW component exhibited unique vertical distribution pattern, with abundance ratio varying over six and three orders of magnitude across Pico/Microplankton (1.

View Article and Find Full Text PDF

Structural docking between the adaptive immune receptors (AIRs), including T cell receptors (TCRs) and B cell receptors (BCRs), and their cognate antigens are one of the most fundamental processes in adaptive immunity. However, current methods for predicting AIR-antigen binding largely rely on sequence-derived features of AIRs, omitting the structure features that are essential for binding affinity. In this study, we present a deep learning framework, termed DeepAIR, for the accurate prediction of AIR-antigen binding by integrating both sequence and structure features of AIRs.

View Article and Find Full Text PDF

Prime editing is a revolutionary gene-editing method that is capable of introducing insertions, deletions and base substitutions into the genome. However, the editing efficiency of Prime Editor (PE) is limited by the DNA repair process. Here, we show that overexpression of the flap structure-specific endonuclease 1 (FEN1) and the DNA ligase 1 (LIG1) increases the efficiency of prime editing, which is similar to the dominant negative mutL homolog 1 (MLH1dn).

View Article and Find Full Text PDF

Accurately predicting the antigen-binding specificity of adaptive immune receptors (AIRs), such as T-cell receptors (TCRs) and B-cell receptors (BCRs), is essential for discovering new immune therapies. However, the diversity of AIR chain sequences limits the accuracy of current prediction methods. This study introduces SC-AIR-BERT, a pre-trained model that learns comprehensive sequence representations of paired AIR chains to improve binding specificity prediction.

View Article and Find Full Text PDF

Hypoxia and ocean warming are two mounting global environmental threats influencing marine ecosystems. However, the interactive effects of rising temperature and depleted dissolved oxygen (DO) on marine protists remains unknown. Here, we conducted a series of laboratory experiments on four protozoa with distinct cell sizes to investigate the combined effects of temperature (19, 22, 25, 28, and 31 °C) and oxygen availability (hypoxia, 2 mg DO L and normoxia, 7 mg DO L) on their physiological performances (i.

View Article and Find Full Text PDF

Microeukaryotic diversity, community structure, and their regulating mechanisms remain largely unclear in chemosynthetic ecosystems. Here, using high-throughput sequencing data of 18S rRNA genes, we explored microeukaryotic communities from the Haima cold seep in the northern South China Sea. We compared three distinct habitats: active, less active, and non-seep regions, with vertical layers (0-25 cm) from sediment cores.

View Article and Find Full Text PDF

Marine sediments are important methane reservoirs. Methane efflux from the seabed is significantly restricted by anaerobic methanotrophic (ANME) archaea through a process known as anaerobic oxidation of methane (AOM). Different clades of ANME archaea occupy distinct niches in methane seeps, but their underlying molecular mechanisms still need to be fully understood.

View Article and Find Full Text PDF

Cold seeps are biological oases of the deep sea fueled by methane, sulfates, nitrates, and other inorganic sources of energy. Chemolithoautotrophic bacteria and archaea dominate seep sediment, and their diversity and biogeochemical functions are well established. Fungi are likewise diverse, metabolically versatile, and known for their ability to capture and oxidize methane.

View Article and Find Full Text PDF

Background: Many deep-sea invertebrates largely depend on chemoautotrophic symbionts for energy and nutrition, and some of them have reduced functional digestive tracts. By contrast, deep-sea mussels have a complete digestive system although symbionts in their gills play vital roles in nutrient supply. This digestive system remains functional and can utilise available resources, but the roles and associations among gut microbiomes in these mussels remain unknown.

View Article and Find Full Text PDF

Spatial omics technologies generate wealthy but highly complex datasets. Here we present Spatial Omics DataBase (SODB), a web-based platform providing both rich data resources and a suite of interactive data analytical modules. SODB currently maintains >2,400 experiments from >25 spatial omics technologies, which are freely accessible as a unified data format compatible with various computational packages.

View Article and Find Full Text PDF
Article Synopsis
  • NAFLD (Non-Alcoholic Fatty Liver Disease) is a significant global metabolic disorder, with limited research on the role of mitochondrial pyruvate carrier 1 (MPC1) in liver lipid metabolism and disease progression.
  • A study measuring MPC1 expression in liver tissues found that higher levels correspond to increased liver lipid deposits in NAFLD patients, while MPC1-deficient mice showed reduced lipid accumulation but unchanged lipid synthesis gene expression.
  • The investigation revealed that lactylation of fatty acid synthase is regulated by MPC1 and affects its activity, thus influencing liver lipid accumulation and inflammation management in the context of NAFLD.
View Article and Find Full Text PDF
Article Synopsis
  • Nutrient pollution from aquaculture is causing coastal eutrophication, which has harmful economic and ecological impacts.
  • A year-long study of planktonic microbial communities revealed that active fish farms increase total inorganic nitrogen and alter bacterial diversity, particularly boosting Alpha- and Gammaproteobacteria.
  • The research highlights that both active and fallow fish farming significantly affect nitrogen cycling processes, which is crucial for sustainable management in response to growing aquaculture demands.
View Article and Find Full Text PDF

Underlying medical conditions, such as cancer, kidney disease and heart failure, are associated with a higher risk for severe COVID-19. Accurate classification of COVID-19 patients with underlying medical conditions is critical for personalized treatment decision and prognosis estimation. In this study, we propose an interpretable artificial intelligence model termed VDJMiner to mine the underlying medical conditions and predict the prognosis of COVID-19 patients according to their immune repertoires.

View Article and Find Full Text PDF

Renal fibrosis (RF) is the common pathway for a variety of chronic kidney diseases that progress to end-stage renal disease. Chitosan oligosaccharide (COS) has been identified as possessing many health functions. However, it is not clear whether COS can prevent RF.

View Article and Find Full Text PDF

Optical metasurfaces are researched more and more intensively for the possible realization of lightweight and compact optical devices with novel functionalities. In this paper, a new beam-steering system based on double metasurface lenses (metalenses) is proposed and developed. The proposed system is lightweight, small volume, low cost, and easy to integrate.

View Article and Find Full Text PDF

Phytoplankton diversity and community compositions vary across spaces and are fundamentally affected by several deterministic (e.g., environmental selection) and stochastic (e.

View Article and Find Full Text PDF

An angle estimation algorithm for tracking indoor moving targets with WiFi is proposed. First, phase calibration and static path elimination are proposed and performed on the collected channel state information signals from different antennas. Then, the angle of arrival information is obtained with the joint estimation algorithm of the angle of arrival (AOA) and time of flight (TOF).

View Article and Find Full Text PDF

Background: The dose-response relationship between patient engagement and long-term intervention effects in mobile health (mHealth) interventions are understudied. Studies exploring long-term and potentially changing relationships between patient engagement and health outcomes in mHealth interventions are needed.

Objective: This study aims to examine dose-response relationships between patient engagement and 3 psychosocial outcomes in an mHealth intervention, Run4Love, using repeated measurements of outcomes at baseline and 3, 6, and 9 months.

View Article and Find Full Text PDF